
Learning and Strengthening Meta-heuristics in

Plan Space Planning

A THESIS

submitted by

SHASHANK SHEKHAR

for the award of the degree

of

MASTER OF SCIENCE
(by Research)

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

December 2016



THESIS CERTIFICATE

This is to certify that the thesis entitled Learning and Strengthening Meta-heuristics

in Plan Space Planning, submitted by Shashank Shekhar, to the Indian Institute of

Technology, Madras, for the award of the degree of Master of Science (by Research),

is a bona fide record of the research work carried out by him under my supervision. The

contents of this thesis, in full or in parts, have not been submitted to any other Institute

or University for the award of any degree or diploma.

Prof. Deepak Khemani
Research Guide
Department of CSE
IIT-Madras, 600 036

Place: Chennai

Date:



ACKNOWLEDGEMENTS

I express my sincere gratitude to my advisor Prof. Deepak Khemani for all his support,

valuable suggestions, and the freedom he provided during this whole program. He is

a great supervisor and a great person to work with. Since beginning his advice on my

research carrier is just spot-on. He always kept his doors open for me to discuss even

the small technical details I was struggling with. This contributed a lot in the quality of

this thesis and of course its completion as well.

Further I would like to thank the General Test Committee (GTC) members (Prof. C.

Chandra Sekhar, Dr. V. Krishna Nandivada, and Dr. Rahul Marathe) of this thesis. You

provided very useful hints for improving this thesis manuscript, which I have gladly

embraced. I convey my special thank to Prof. Narayanaswamy N. S. for all his support

during these years.

A special thank goes to Dr. HLS Younes and Prof. Malte Helmert for being so kind

in making their softwares (the automated planners; Versatile Heuristic Partial Order

Planner (VHPOP), and Fast Downward (FD) respectively) available. I would also like

to thank Dr. Nir Lipovetzky for his valuable advices.

I convey my special thank to Sai Ramesh, Stanley Simoes, and Baskaran Sankara-

narayanan, from AIDB Lab for their unconditional support and helpful discussions in

all aspects of my research. Their willingness to help me in sorting out the technical and

non-technical difficulties, pushed me in the right direction was extraordinary. My most

profound thank goes to the peers in AIDB and Dept. of CSE, with whom I enjoyed this

lush green campus of IIT Madras. I will always miss the moments I have spent here

with one or the other. You people were great to me for all your support. All of you are

good researches and amazing human beings.

I would like to thank IIT Madras for providing the funds for attending a couple of

conferences. This financial help is gratefully acknowledged. Thanks again goes to IIT

Madras for having such a beautiful campus. You simply lose all your anger when you

enter inside the campus. I cannot resist myself mentioning that I completed 3700 miles

i



of running in last 3 years at this campus.

I would like to thank my parents and my elder brother for their constant support over

the years, giving me all the freedom, and showing unconditional faith in my abilities. I

could not have done this without the help and support from such great human beings.

ii



“A man who has never gone to school may steal from a freight car; but

if he has a university education, he may steal the whole railroad."

Theodore Roosevelt

“Most people are more concerned with doing things right than with do-

ing the right things. The secret is to focus on doing the right things right."

Peter Drucker
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ABSTRACT

KEYWORDS: Domain Independent Planning, Partial Order Causal Link Plan-

ning, Heuristic Search, Planning and Learning, Inadmissible

Heuristics, Portfolios of Heuristics, Planning Graph, and Artificial

Neural Network (ANN).

Planning is the reasoning side of acting. It is a model based approach to autonomous

behavior as per the definition given by Hector Geffner. Planning is an explicit delibera-

tion process of selecting and organizing actions by anticipating their possible outcomes.

In Automated planning, we study this explicit deliberation process computationally.

The domain independent aspect of automated planning is a well studied field in Ar-

tificial Intelligence (AI). In recent years, heuristic search in Domain Independent Plan-

ning (DIP) has been widely studied. It has been one of attractive approaches used by

the planning community in last ten years. The heuristic functions employed in DIP are

domain independent too and do not consider domain specific information. A search al-

gorithm used in DIP requires an informed heuristic function that could guide the search

towards the goal while solving a planning problem. In the modern era of heuristic

search, we are more concerned about designing domain independent heuristic func-

tions. On the other hand, a domain specific heuristic is more informed during search

for the problems belonging to that domain. The usage of domain independent heuristic

functions often throws up experimental evidence that different heuristic functions per-

form well in different domains. Literature reveals that the informativeness of a domain

independent heuristic function varies due to the varying nature of planning problems.

This nature is often characterized by the degree of interaction between subgoals and

actions. For a heuristic function, sometimes it is hard to capture the real nature of a

planning problem.

Due to the varying nature of planning problems, often, a heuristic function cannot

be equally effective in all planning domains. For improving the effectiveness of a search

algorithm, the literature says that sometimes it is good to enhance the informativeness
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of the heuristic function employed in the algorithm, using machine learning approaches.

One possible approach could be learning from multiple, possibly inadmissible, heuris-

tics for planning. During learning, we consider existing heuristic functions as features

for learning. We apply several machine learning approaches that provide these heuris-

tics with some individual weighted coefficients. These individual weighted coefficients

can be different for different planning domains. The learning for planning literature

shows that combining multiple heuristics, often, provides a more informed heuristic

(also known as meta-heuristic) as compared to the individual feature heuristics. While

another approach is to improve the informativeness of a heuristic function by capturing

the single-step-error associated with the heuristic. A similar strategy is used by Thayer

et al. based on TD learning, for learning inadmissible heuristics using an unsupervised

learning approach in state-space planning.

In this thesis, we come up with effective ways of combining multiple heuristics to-

gether for Partial Order Causal Link (POCL) planning. We apply several machine learn-

ing techniques for coming up with domain specific combinations of existing heuristics.

For the first time in the POCL framework, we use an adapted form of Temporal Dif-

ference (TD) learning that is proposed by Richard S. Sutton (1988), for enhancing the

informativeness of heuristics on the fly.

We divide the discussion below into two major parts. In the first part of this the-

sis, we capture an approach of learning the characteristics of different domains in a

supervised manner by employing a feed forward Artificial Neural Network (ANN) and

its variants. We employ ANNs to combine different, possibly inadmissible, heuristic

functions which learn domain specific combinations but the approach is domain inde-

pendent. We also extend the heuristic functions derived from state-space based planning

to POCL planning. Here our objective is to allow a planner to learn parameters over

time in a supervised manner, to combine multiple heuristic in a given planning domain.

We introduce another approach for learning domain specific configurations of exist-

ing heuristics in a supervised manner. The proposed approach is domain independent

and fully automated. We again focus on the POCL framework and endeavor to enhance

the performance of a POCL planner by learning from existing non-temporal POCL

heuristics in a supervised manner. The focus of this approach is to come across a do-

main specific combination of a meta-heuristic which can speed up the planning process.
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In the second part, we discuss a promising approach that monitors and reduces the

error associated with a given POCL heuristic function on the fly. This instance spe-

cific but domain independent approach is employed in the search algorithm when the

POCL planner solves a particular problem. Here the goal is to allow a POCL planner to

roughly estimate the effective average-step-error during search. The average-step-error

is calculated using summation of all the single-step-error observed from the initial to

current stage of the planning process. In the process, the planner tries to have more

accurate estimates in the subsequent stages. This online heuristic tuning approach is

a general purpose approach, and can be used to enhance the informativeness of any

heuristic function. Of course, using this approach, an improvement cannot be guaran-

teed always as it depends on the nature of the heuristic. We also employ this approach

to perform online tuning to minimize the error associated with the predictive models

learned using our previous approach, thus enhancing their informativeness further as

well.

To evaluate these approaches that are briefly introduced in the last paragraph, we

select various planning benchmark domains like Logistics, Rovers, and Gripper, from

different International Planning Competitions (IPCs). We perform separate experimen-

tations for our approaches and compare them on standard planning benchmarks. The

experimental evaluations demonstrate that our approaches are competitive with the state

of the art planners and heuristics. However, they often perform better.
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Chapter 1

INTRODUCTION

Planning is the reasoning side of acting (Ghallab et al., 2004). It is an explicit delib-

eration process of selecting and organizing actions by anticipating their possible out-

comes. In automated planning, we study this explicit deliberation process computation-

ally. There are many practical and theoretical motivations for automated planning like

designing a processing tool which can enable us to access planning resources efficiently.

A combined theoretical and practical motivation for automated planning involves build-

ing an intelligent and fully autonomous system. Automated planning is a well studied

field of Artificial Intelligence (AI). AI captures the intelligent aspect of computation

where automated planning definitely plays a key role. Automated planning deals with

solving problems by producing a valid sequence of actions which can take an agent

from the given initial state to a desired goal state.

In general, planning is intractable. It is known to be PSPACE-hard, where the

space and time complexities of the existence of a plan for a given planning problem

are EXPSPACE-complete and NEXPTIME-complete respectively (Ghallab et al., 2004;

Bylander, 1994). Even a simple planning problem with propositional state variables is

PSPACE-complete. In this thesis, we discuss classical planning where all actions are

deterministic and only one agent is involved. An action is deterministic if a planner is

fully aware of the effects of that action. The action is instantaneous in nature which

means that it produces the effects of that action immediately after the planner executes

it. Here, the whole state space is known to the planner where only the planner is allowed

to make any changes in the state-space.

An important sub-area of automated planning is known as Domain Independent

Planning (DIP) (Wilkins, 1984). Hector Geffner (2010) says that planning is a model

based approach to autonomous behavior (Geffner, 2010). In DIP, we are interested

in building an autonomous system that can solve a given planning problem. In other

words, it is a task of finding a sequence of actions that leads the autonomous system

from the given initial state to desired goal state, if the given problem is solvable. The



autonomous system avoids using the domain specific knowledge in the process of find-

ing a valid sequence of actions for the given problem. The system is also required to

take independent decisions during the planning process (Bonet and Geffner, 2000).

To reduce the total effort required for a planner to solve a given planning problem,

the study of certain properties and useful structures of the problem is very important. A

tractable problem would become unsolvable if the planner ignores important properties

and structures. As a result, the planner may go on a long tour in the search space as

the space-space grows exponentially. Over the last fifteen years, planning as heuristic

search has been an important approach for automated planning. In general, a heuristic

search approach that is competent in DIP, uses domain independent heuristics to guide

the search. A heuristic is domain independent if it is designed in a way such that it uses

domain specific information (representation specific details), but overall its design does

not change for different domains. The expectation is that its search guidance should be

effective in each planning domain. Also, if it is rigorously designed, it should be able

to exploit domain specific knowledge in domain independent manner. Such heuristics

reduce the effort of a domain independent planner. The literature reveals that a given

heuristic estimate is not informed in all planning domains as its informativeness varies

over planning domains due to the nature of the domains. The set of almost all well

informed heuristic functions from the literature which have been employed in planning

as heuristic search, has been based on the tractable set of planning (Bonet and Geffner,

2001; Hoffmann, 2003; Helmert, 2006). The problem is that this known tractable set of

planning is still very small. Almost all informed heuristics employed in the literature are

domain independent in nature. They are designed in a way that they can extract domain

specific structures and properties in domain independent manner. Perhaps, we all know

that there is no universal heuristic estimate which is effective for heuristic search in all

planning domains.

Partial Order Causal Link (POCL) planning is one form of performing domain in-

dependent classical planning for solving planning problems. The POCL framework

dissociates the task of finding actions that constitute a plan and the placement of those

actions in the plan. The search algorithm operates in a space of plans, starting with a

null plan that represents all possible partial plans. Actions are added to the partial plan

to achieve some objective, characterized by resolving flaws in the partial plan. In this

thesis, by following Nguyen and Kambhampati (2001); Younes and Simmons (2002,
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2003), we work with fully grounded actions in lieu of partially instantiated operators,

trading delayed commitment for speed.

The POCL framework is one of the well studied areas of automated planning. POCL

planning is also called as Partial Order Planning (POP). In general, the abbreviations

POCL and POP are the same, and are used often interchangeably in the literature. The

POCL framework utilizes the least commitment strategy during the planning process.

The strategy avoids committing to any unnecessary constraints during the planning pro-

cess which makes the framework different from almost all approaches employed in

state-space planning. A POCL planning algorithm is usually domain independent which

strictly uses delayed commitment strategy. An introduction to the delayed commitment

planning (the POCL framework) can be found in (Weld, 1994). Our main focus in this

thesis is to accelerate a POCL planner over different benchmarks. There have been

many approaches proposed to make a POCL planner efficient in the past but these ap-

proaches are not competitive enough with many recent state-space planners. In the last

decade, the POCL was a very attractive framework because of the plan flexibility it

provides during the execution phase. However, current state-space planners are very

efficient, generate consistent states fast, and use powerful state-based heuristics. But

they often commit too early to ordering of actions, giving up on flexibility in the plans.

The state-of-the-art non-temporal POCL heuristics used in the framework are not

competitive with these state-space heuristics, in terms of the plan quality and search

time. The work done by the planning community researchers suggests that sometimes

machine learning approaches have done well in state-space planning (Thayer et al.,

2011; Samadi et al., 2008; Arfaee et al., 2011). Instead of designing a new informed

heuristic, these approaches can be adapted and employed to combine multiple POCL

heuristics as well. However, the literature shows that often the combination of heuristics

become more informed as compared to the individual ones (Röger and Helmert, 2010).

To enhance the informativeness of state of the art POCL heuristics, we adapt previous

successful machine learning approaches employed in the literature. We exploit plan-

ning domains’ structures and properties using learning approaches, which enhances the

effectiveness of the POCL planners. Although the approaches employed exploit domain

specific knowledge but their designs make them fully domain independent.

Keeping the target of enhancing the efficiency of a POCL planner in mind, we come
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up with different strategies, introduced in the coming sections, which enhance the per-

formance of our POCL planners. These planners are completely built upon Versatile

Heuristic Partial Order Planner (VHPOP) (Younes and Simmons, 2003). This thesis

gives a detailed overview of heuristic search enhancements in the POCL framework.

The enhancements are done by generating, selecting, and combining multiple heuris-

tics using different machine learning approaches. However, these approaches have been

employed in the literature of automated planning. The community has seen the effec-

tiveness of learning for planning approaches which drive us to use them in the POCL

framework as well. We have observed the efficiency of our approaches on various In-

ternational Planning Competition (IPC) benchmark domains, where Stanford Research

Institute Problem Solver (STRIPS) (Fikes and Nilsson, 1971) style non-temporal plan-

ning domains and problems have been considered. The domains have been considered

according to state-of-the-heuristics. It means, we consider most of those domains where

latest heuristics have performed well, and we try to improve on that. In the next section,

we quickly introduce our research objectives.

1.1 Research Objectives

The POCL framework alternates between two choices. First, a POCL planner decides

which partial plan to select from the set of partial plans for further refinement. While in

the second choice, the planner decides which flaw to be resolved first from the partial

plan selected by the first choice, and with which resolver. Each resolver generates a new

partial plan that gets stored in the set of partial plans. The planner needs good heuristics

for both the choices during the planning process because a wrong selection of a resolver

may end up searching more number of nodes in the plan-space.

It is very important to have an informed heuristic function during the planning pro-

cess to evaluate each partial plan from the set of partial plans during planning. An

informed heuristic enables the planner to select the most suitable (discussed later) par-

tial plan from the set for further refinement. In this process, the heuristic estimates the

total effort required to refine (discussed in the next chapter) each partial plan. The par-

tial plan that requires the least effort will be the most suitable one to be picked next.

Often, a good choice of partial plan leads the planner to minimal number of refinements

4



with searching minimal number of nodes. Perhaps, this also generates shorter solution

plans. The POCL literature specifies that the current POCL heuristics are not effective

in all planning domains. As we said earlier, the informativeness of a heuristic estimate

varies over the domains due to the nature of the heuristic. A heuristic is not usually very

informed if it does not capture essential domain specific knowledge.

For the general purpose search algorithms employed in DIP, it is hard to find out

which heuristic estimate will be informed in a given domain. However, machine learn-

ing approaches are quite successful in such scenarios where picking the most suitable

heuristic for a particular domain is crucial. We discuss some of the successful recent ap-

proaches used by the planning community in the next chapter. The approaches provide

separate priorities to the individual heuristics using regression models. The priorities

vary with planning domain because the nature of these domains also vary. Machine

learning techniques have been employed in the past to capture the actual nature of plan-

ning problems. Often, the regression models are learned over solved small sized and

simple planning problems. Solving such problems is not a big overhead to the employed

planning algorithms. The learned regression models over these small problems are also

referred as meta-heuristics. In the literature, sometimes, they are also called as hyper-

heuristics as sometime we learn hyper-parameters to combine multiple heuristics. In

this thesis, we use these terms interchangeably.

In the next section, we briefly discuss the abstract of our approaches employed.

They focus on designing good informed heuristic functions using a few well known

machine learning techniques. These new heuristics are employed for selecting the most

suitable partial plan from the set of partial plans, which is at the first choice point of the

planning process. On the other hand, for selecting the most demanding flaw from that

selected partial plan, we use existing informed heuristics from the literature of POCL

planning (Younes and Simmons, 2003).

1.2 Contributions of the Thesis

We put forward some effective ways for generating new heuristics that are applicable in

the POCL framework. In a situation where a POCL planner selects one from many op-

tions, the planner requires a strong heuristic estimate to enhance the plan quality which
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reduces the required search effort. In this thesis, we propose a couple of machine learn-

ing approaches to come up with more informed heuristic estimates (the meta-heuristics).

The approaches discuss either about learning meta-heuristics by tuning parameters that

are used to combine multiple heuristics together, or making an existing heuristic more

informed. As stated earlier, we use the learned regression models using the following

approaches at the first choice point during planning.

1.2.1 Learning from Multiple Existing Heuristics

We start with a discussion about the effectiveness of learning in planning. We combine

multiple inadmissible heuristic functions in a supervised manner such that the combi-

nation gives a heuristic value that is close to the actual targets. Sometimes, it is hard

to capture the complex nature of planning problems. To handle this complex nature, in

some cases Artificial Neural Networks (ANNs) have been quite useful in capturing the

useful structures of planning problems (Samadi et al., 2008). Considering the success

of ANNs, we deploy them for the learning combination heuristics. To enhance the in-

formativeness of the learned meta-heuristic in the process we propose a cost function

that is often helpful in getting heuristic estimates close to but smaller than the actual

targets. Such combinations are deployed as heuristics in different search algorithms. In

the literature, an ANN that uses a cost function like ours is called as Penalty-Enhanced

ANN or in short (PE-ANN). We discuss PE-ANN in detail in the coming chapters. Cur-

rently, we have tested PE-ANN in a couple of planning domains. However, we often

get the estimates close and smaller than the actual targets. The current experiments do

not demonstrate that this approach help a POCL planner in achieving good plan quality

with minimal search effort.

Apart from the above approach, there have been several learning approaches em-

ployed in planning literature which have shown good results. These approaches mostly

cover supervised learning, unsupervised learning, active learning, and Bootstrap learn-

ing. Following the work done in the past (Arfaee et al., 2011; Thayer et al., 2011;

Samadi et al., 2008; Virseda et al., 2013), in this approach, we again use supervised

learning to learn meta-heuristic functions that are combinations of multiple heuristics.

We use several regression techniques for learning. Our motivation for employing this

approach is to learn meta-heuristics that can speed up the planning process, unlike the
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approach discussed in the last paragraph where we focus on learning admissible meta-

heuristics.

We train regression models in a supervised manner for which we need training

data sets. We propose a domain independent algorithm that generates datasets for

each domain and learns regression models for our POCL planner. We call this plan-

ner RegPOCL that is based on VHPOP. We consider existing heuristics from POCL

literature as the features for learning meta-heuristics. A few of them are quite weak

due to the nature of their design. A meta-heuristic is represented as follows: for an

example, suppose hhh is the learned meta-heuristic, then hhh = 3×h1 + 0.5×h1×h2 -

4×h3, where h1 to h3 are the three feature heuristics. Here, the coefficient of each hi is

a learned parameter (individual weight, wi). Formally, it is,

hhh =
i=k∑
i=1

wi × hi

The approach is completely domain independent but RegPOCL learns relevant domain

specific properties and structures.

In short, RegPOCL learns different meta-heuristics using different regression tech-

niques from machine learning literature. This improves the effectiveness of heuristic

search in the POCL framework.

1.2.2 Heuristics Tuning Using TD Learning

The study of heuristic search in classical state-space planning has received significant

interest in the past. Computing different heuristic functions for different states or prob-

lems or domains is not suitable in DIP. There is no efficient universal domain indepen-

dent heuristic estimate that is effective in all planning domains (Younes and Simmons,

2003).

It has been empirically observed that heuristics often commit some error in the esti-

mation at each stage of DIP. Here, the error term considers the difference between the

previous and current estimates. Therefore, in this approach, we examine the single-step-

error associated with a given heuristic function on the fly during search. The approach

monitors and reduces the step error, that is performed by the algorithm while it solves a
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problem. The approach of monitoring the single-step-error is based on Temporal Differ-

ence (TD) learning. It learns instance specific details in a domain independent manner.

It also captures the current running average-step-error associated with a given heuristic

function and minimizes the error estimate during the next prediction.

The basic idea behind this error monitoring approach is to avoid a heuristic cal-

culating similar estimates for different planning problems. The approach starts with a

heuristic, h. After each refinement, the approach corrects the error (ε) associated with

h, e.g. from h to h-ε. Therefore, the approach avoids h arriving at similar estimates

of distance-to-go for solving two different problems because the factor ε varies with

natures of the problems. The fact is that, two problems may belong to one planning

domain, and carry different nature (the orientations of the objects involved in that prob-

lem). We tested this technique on different IPC benchmarks for the POCL framework.

It often leads to high quality plans and the search effort required to find the plans re-

duces too.

If we consider the supervised approaches employed for learning from multiple ex-

isting heuristics, due to the negative effects of the generalizing nature of supervised

learning, an error tuning approach is quite useful for the learned meta-heuristics. Su-

pervised learning generalizes the learned knowledge in the training phase to the testing

phase. It learns from the training datasets generated by solving simple problems and

considers that large problems carry similar natures, of course, that is not always the case

for planning problems. Due to this generalization, the learned meta-heuristics may be-

have like a less informed heuristics for large sized problems. For sorting this issue out,

we use the error tuning approach based on Temporal Difference (TD) learning. This

two-fold approach has been evaluated and we find that RegPOCL is very efficient on

benchmarks. Using this approach, the search often leads to high quality solution plans

with less search effort.

1.3 Outline of the Thesis

We discussed automated planning, DIP, the POCL framework, and heuristic search in

planning along with some machine learning strategies employed in the literature. We

give motivation for the usage of machine learning approaches in POCL planning as
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these approaches are expected to capture the essential features of planning problems.

Next, we give a brief outline of this thesis.

• In Chapter 2, we build a complete background and give motivating examples
that drive us towards the approaches used. We talk about the importance of
POCL planning and why this is different from state-space based planning. There
are some negative aspects associated with the POCL framework too like current
heuristics are not powerful, also sometimes the nodes in the search space are
inconsistent due to looping of dependencies in a partial plan (node in the plan
space). We also give examples that support our decision for improving the POCL
framework. We end up discussing some recent advancements covered in the plan-
ning literature. This portion of the thesis is only distantly related to our employed
approaches. Perhaps, it covers recent trends in the field heuristic search in auto-
mated planning. We confine our discussion to the classical and temporal planning
perspectives.

• In Chapter 3, by following the current interests of researchers, we adapt and use
some state-space based heuristics in the POCL framework with small modifica-
tions. The chapter also demonstrates some preliminary evaluations as the work
is only partially done. We also adapt the PE-ANN (Samadi et al., 2008) and
empirically show that the modifications used in the existing approach, often pos-
itively affect the learning processes (Bishop, 2006). We give complete weight
update rules using Gradient Descent algorithm for the new error function used
in PE-ANN. In another approach, we demonstrate some adaptations of regres-
sion techniques like Linear Regression and Multi-Layer Perceptron, which have
shown good results. Like previous approach, they are also helpful in learning
combinations of domain specific meta-heuristics. We also show that often the
performance of the combination heuristics is better than the individual heuristic
estimates including the state of the art.

• This is followed by a discussion of an adapted approach based on Temporal Dif-
ference (TD) learning in Chapter 4. If we follow the literature of state-space based
planning, a heuristic function commits some error at each step during search.
Monitoring such error closely influences the performance of search algorithms
resulting in the POCL planner becomes more efficient. The chapter also contains
experimental results for the approach employed for monitoring and error correct-
ing. In this chapter, we also employ TD learning approach to the learned models
obtained using multiple existing heuristics. The employment of TD approach to
the learned models, enhances their informativeness thus increasing the efficiency
of RegPOCL. We employ TD learning because sometimes the poor generaliza-
tions takes place in the training phase of supervised learning which affects the
performance of RegPOCL.

• Following this, in Chapter 5, we put a brief summery of this thesis in a nutshell
where we also discuss some future avenues for further research.
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Chapter 2

CLASSICAL PLANNING AND LEARNING

In this chapter, we give a detailed overview of automated planning. We describe pre-

liminaries to classical planning. This is required to fully understand the content of the

thesis. We discuss different kinds of search algorithms along with the heuristics used in

the classical planning literature. We also give brief descriptions of the major, general

purpose, learning approaches employed in automated planning by planning community

researchers.

2.1 Classical Planning

Classical planning is one of the important fields of AI. There has been significant im-

provement in classical planning approaches in last fifteen years. Despite this fact, still,

there are many problems that remain intractable for the state-of-the-art planners. It is

a fact that solving planning problems, is among the hard problems in AI to solve (By-

lander, 1994; Erol et al., 1995). There are three different ways to represent classical

planning problems. These representations are, (i) set-theoretic representation, (ii) clas-

sical representation, and (iii) state-variable representation. Each of them has equal ex-

pressiveness, and one of these representations can be represented as either of the other

representations (Ghallab et al., 2004). In this thesis, we describe in detail, the classical

representation as the benchmark domains used for the evaluations by us solely follow

the classical representation. However, we also use some extended representations of the

classical representation. We do not describe those extensions in this chapter, however

we describe them wherever it is required. In the next section, we formally describe the

classical representation of classical planning problems.

2.1.1 Classical Representation

Major part of the text used in this section has been taken directly from the classical

planning literature (Ghallab et al., 2004; Chrpa, 2009), and rewritten in a different lan-



guage. The notations used to represent the classical representation have been derived

from first-order logic. Here, each state is represented as a set of logical atoms. The

tautology and falsity of these atoms depend on some interpretation. Here, actions are

shown as planning operators that change the truth values of these atoms.

States

To develop languages for classical planning like STRIPS and Planning Domain De-

scription Language (PDDL), we start with first-order language, L. There are many

constant and predicate symbols but no function symbols in L. In general, to represent

predicates and constants we use alphanumeric strings, while for variables we use sin-

gle character, possibly with subscripts like l and m12. We represent a state as a set of

grounded atoms of L. The number of all possible states in the whole search space, S,

is finite as there are no function symbols used in L. An atom m holds true in a state,

s, if and only if p ∈ s. Another state s1 satisfies s that is denoted as s1 |= s, if for a

possible substitution, σ, every positive literal of σ(s) is in s1 and no negated literals of

σ(s) is in s1. We follow the closed-world assumption that says an atom holds in a state

if and only if it is explicitly specified in that state. The truth value of an atom may vary

from state to state as it depends on the interpretation. For example, an atom at(robot1,

location1) is true in a state, s, if robot1 is at location1, otherwise it is false.

Operators and Actions

In classical representation, a fully instantiated planning operator is called as an action.

A planning operator is a triple of the form, o = 〈name(o), precond(o), eff(o)〉, where

name(o) is the name of the operator, and precond(o) and eff(o) are respectively the

preconditions and the effects of the operator. For example, a fully instantiated operator

(an action) can be represented as:

load (k1, loc1, c1, rob1)

;; crane k1 at location loc1 loads container c1 onto robot rob1

precond: belong(k1, loc1), holding(k1, c1), at(rob1, loc1)

eff: empty(k1), ¬holding(k1, c1), loaded(rob1, c1)

For this action the positive effects (eff+) are empty(k1) and loaded(rob1, c1), and the
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only negative effect (eff−) is holding(k1, c1). In a similar way, we can figure out its

positive preconditions (precond+) and negative preconditions (precond−).

As per the definition given in (Ghallab et al., 2004), an action is any grounded in-

stance of a planning operator. If a is an action and s is a state such that the set of

positive preconditions, precond+(a), is a subset of s, and the set of negated precondi-

tions, precond−(a), is disjoint to s, then, a is an applicable action to the state s. Eq. 2.1

shows the result of applying a in s which discovers a new state, s1, in the search space

using a state transition operator, γ (also known as a progression operator):

s1 ← γ(s, a) = (s− eff−(a)) ∪ eff+(a) (2.1)

This can easily be computed using set operations.

Domains, Problems, and Plans

A classical planning domain in L is a restricted state-transition system,
∑

= (S,A, γ),

such that, S is subset of 2{all grounded atoms of L}, A is a set of all possible fully grounded

instantiations of the operators of that domain, γ is defined as in Eq. 2.1. Here, S is

closed under γ, which means the state, s1 s.t. s1← γ(s, a), then s1 ∈ S. This is true for

all applicable actions in s, and for each state belongs to S.

A classical planning problem is represented as a triple P = (
∑

, s0, g), where s0 is

the starting state, could be any state in S, and g is the goal state. We also consider a

term Sg that is a state in S such that Sg satisfies g. Apart from the notion of applicable

actions, we have the notion of relevant actions as well when we regress from a given

state. This is again performed using set operations using the regression operator, γ−1.

The general usage of γ−1 says that we regress from the goal state and try to discover the

starting state in S. An action, a, is relevant for a goal state g if, (i) eff(a) contributes to

g (g ∩ eff(a) 6= φ), and (ii) eff(a) does not have any conflict with g (g+ ∩ eff−(a) = φ,

and g− ∩ eff+(a) = φ). For a relevant action a for g, the regression operator (γ−1) is

defined as,

s← γ−1(g, a) = (g − eff(a)) ∪ precond(a) (2.2)

Here, s is the resulting state after the execution of γ−1. If we reach to the initial state

using γ−1 further in s, a will be the last action of a valid solution plan found.
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A plan, π, is a valid solution plan for a given planning problem P , if γ(s0, π) satis-

fies the goal state, g. A plan is redundant if a consistent sub-sequence of the plan is also

a solution plan. If π is not redundant then the plan length, |π| - the number of actions in

π, is either minimal or the shortest.

Next, we discuss basics of some general purpose search algorithms used in classical

planning. We just saw the classical (state-space) representation of classical planning. In

general, state-space approaches solve planning problems by employing forward search

algorithm that uses γ, and backward search algorithm that uses γ−1. Forward state-

space planning employs forward search algorithm, and backward state-space planning

employs backward search algorithm. In the next subsections, we discuss these two

approaches in detail.

2.1.2 Forward State-Space Planning

The state-space search algorithms are one of the simplest algorithms used in automated

planning. Forward State-Space Planning (FSSP) applies forward search algorithm to

reach the goal state from the initial state. The algorithm that uses progression operator,

selects applicable actions and returns a solution plan if the algorithm finds a consistent

sequence of actions that can transform from initial state to the goal state. A sequence

of actions is consistent, if the search algorithm Forward-Search(
∑

, s0, g) solves the

given planning problem, P = (
∑

, s0, g). The algorithm returns a failure if it does

not solve P . The forward search algorithm is sound and complete, which respectively

mean the solution plan found will be a real plan for the given problem (soundness),

and the algorithm always finds one such plan if there exists at least one solution plan

(completeness).

To solve a planning problem P , a forward state-space planner expects domain defi-

nition (
∑

) to solve P . For example, the algorithm Forward-Search(
∑

, s0, g) has been

given the domain description,
∑

. As defined earlier, this knowledge is in the form of

operators, constants, and predicates. Given this, the search algorithm uses the progres-

sion operator (γ) to move to the next state in the state-space. For example, suppose an

action a1 which is applicable in the initial state then the next state (s1) can be reached

using the operator γ, which is represented as s1 ← γ(s0, a1). The algorithm progresses
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over the states in S, like s2 ← γ(s1, a2), s3 ← γ(s2, a3), and so forth. In a case, when

P is solved after applying k actions, starting from s0 in S, the search planner returns a

valid sequence of these actions. As defined earlier, this valid sequence is a solution plan

(〈a1, a2, ..., ak〉) for P . This can also be represented in the form given below,

g ← γ(s0, 〈a1, a2, ..., ak〉)

The planner returns failure when the the goal state is not found after searching the entire

search-space. The basic form of FSSP is highly computationally intensive in nature

as the algorithm used in it has high branching factor. To make FSSP effective, the

planning researchers have used informed heuristics to reduce the number of backtracks

over different choices (Ghallab et al., 2004). An appropriate selection of a heuristic

estimator in FSSP often achieves a solution plan faster for a given planning problem as

compared to when the planner has no sense of the direction toward the goal state.

2.1.3 Backward State-Space Planning

In Backward State-Space Planning (BSSP), the planner starts searching from the goal

instead of initial state, in the backward direction for finding a solution plan for a given

planning problem, P = (
∑

, s0, g). The Backward Search algorithm used in BSSP

regresses (using a regression operator, γ−1) from the goal state. The algorithm stops

when it reaches a state s such that s ⊆ s0. In this case the backward state-space planner

either finds a solution plan or it returns failure (Ghallab et al., 2004). At each stage

of planning, the planner regresses to a new goal state that gets generated as shown

as: g ← γ−1(g, ag), where the action ag is a relevant action for the goal state (g).

The planner searches in the backward direction and generates a new partial plan that

is π ← ag.π. The partial plan π becomes a complete plan if the algorithm reaches a

state s, such that s ⊆ s0. Like FSSP, BSSP is also sound and complete due to its

nature (Ghallab et al., 2004). There are many issues associated with BSSP like the

backward search algorithm generates lot of spurious states using γ−1. However, often,

the branching factor of the backward algorithm is small as compared to the branching

factor of the forward search algorithm. For further details of BSSP and FSSP, we refer

readers to (Ghallab et al., 2004)
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In the next sections, we introduce the POCL planning algorithm in brief and also

compare the plan-space and state-space planning aspects.

2.1.4 Partial Order Causal Link Planning

In Chapter 1, in the brief introduction of POCL planning, we said that the POCL frame-

work dissociates the task of finding actions that constitute a plan and the placement of

those actions in the plan. The search algorithm operates in a space of plans, starting

with the null plan that represents all possible plans.

A partial plan π is a 4-tuple (A,O,L,B), where A is a set of actions, O is a set of

ordering constraints between actions, L is a set of causal links among actions and B is a

set of binding constraints. If we consider only grounded actions then the set B becomes

empty. A causal link between two actions ai and aj is represented as ai
p−→ aj states

that the action ai produces a proposition p which is consumed, as a precondition, by

the action aj . An ordering constraint between actions (ai ≺ aj) (in the set O) signifies

that ai is scheduled before aj in the plan. An open condition (OC),
p−→ aj in POP is a

proposition p that is a precondition for the action aj and for which the supporting causal

link is absent. An unsafe link (UL) (also called a threat) is a causal link, say ai
p−→ aj ,

that can potentially be broken by an action ak if it were to be scheduled in between ai

and aj and a negative effect of ak unifies with p. The set F of flaws is the set of all

such OC and UL in a partial plan. That is, F (π) = OC(π) ∪ UL(π). Here, F is not an

integral part of π.

A partial plan is a solution plan when the set F of flaws is empty. We adapt the

UCPOP (Penberthy and Weld, 1992) algorithm which starts with a null partial plan with

only open conditions and no threat. A null partial plan has two dummy actions a0 and

a∞ along with a universal ordering constraint (a0 ≺ a∞) between these two actions. For

a given planning problem a0 produces the propositions in the start state, and a∞ has the

goal propositions as its preconditions. The plan refinement procedure involves selection

of open conditions, along with a resolver for each open condition. The resulting partial

plan may have a threat. Either the provider of the chosen open condition may threaten

some existing causal links or the new causal link(s) may be threatened by some other

existing action(s). Suppose a causal link, ai
p−→ aj , for which an action ak is a threat.
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This threat can be resolved by: (a) promotion - adding an ordering constraint (ak ≺ ai)

(b) demotion - adding (aj ≺ ak), and (c) separation - avoiding a binding (e.g. x = c

or y 6= d) that unifies p with a negative effect of ak. However, in case of working with

grounded actions we cannot use separation as a resolver.

2.1.5 State-Space Planning vs Plan-Space Planning

In this section, we compare the state-space planning and plan-space planning. The

descriptions given in the earlier sections help us to point out the following differences.

• The state-space search algorithms perform the search in the space of states while
the search is performed in space of partial plans in the case of POCL framework.

• The definitions of solution plans are completely different in these two approaches.
POCL planning uses more general plan architecture as compared to simply a
sequence of actions in FSSP.

• The state-space approaches only consider the choices of actions while on the
other hand the POCL framework selects an action as well as an ordering of that
selected action in the partial plan.

• The state-space approaches usually produce plans with total order due to the na-
ture of the search algorithms used, but the POCL framework rarely produces a
total order plan.

These contrasts make the POCL framework effective compared to the state-space plan-

ning as the former can provide plan flexibility during the plan execution phase. How-

ever, there are some disadvantages of the POCL framework as well. The framework

is resource intensive, and also comparatively slow as compared the recent state-space

planners.

2.2 The POCL Framework: An Example

To explain the general POCL framework, we consider an example below. We take a

planning problem to be solved using a POCL planner in Example 1. The example effec-

tively demonstrates that the planner requires good heuristic estimates to come up with

good quality solution plans. As stated earlier, the requirement of rigorous heuristics is

applicable for both the choices, either for selecting the most demanding partial plan or

the most demanding flaw in the selected partial plan, during the planning process.

16



a∞a0

a1

a2

a3

a4

a5

a

b

x

y

a

c

¬e

a a

a d

c e

x

y

d

e

oc
1

oc 2

Figure 2.1: The null partial plan for P from Example 1, with the specified five actions.

Example 1. Consider a planning problem P with five fully grounded actions a1, a2,

a3, a4, and a5. The details about the preconditions and effects of these actions are as

follows.

• a1 has no preconditions and its effects are {a,b}.

• The preconditions of a2 are {x, y} and effects are {a,c,¬e}.

• a3 consumes {a} and produces {a}.

• The actions a4 and a5 respectively consume {a} and {c} and produce {d} and
{e}.

• The initial state S0 of P is {...,x,y,...} the goal state g is {d,e}.

Solution: For Example 1, the planner starts with the null partial plan. In the beginning,

only the open conditions are present in the this partial plan as shown in Figure 2.1. The

current partial plan has two unsupported causal links d and e which can be resolved by

adding the resolvers a4 and a5 respectively. The resulting partial plan is shown in Fig-

ure 2.2. The figure shows that the planner has three choices to resolve an unsupported

causal link a, therefore, three different partial plans can be generated using these three

resolvers. The planner can select one resolver from the three in the next step of refine-

ment. This selection depends on the informativeness of the heuristic function used by

the planner in this stage of POCL planning. For example, a POCL heuristic estimate,

possibly a weaker one, is based on the number of actions present in the partial plan

(|A|). In Figure 2.2, using this heuristic, selection of a resolver for a will be random (it

is the case of tie-breaking). If we select action a1 the resulting partial plan will be hav-

ing c−→ a5 as a next unsupported CL. This can be resolved by adding a CL, a2
c−→ a5

to the current partial plan. The elements of set, precond(a2) are available in the set,
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eff(a0). This gives a solution plan with plan length 4. Similarly, if the planner selects

a2 as a resolver in place of a1, in Figure 2.2, then it finds a solution plan of length 3 as

a2 can also provide c to action a5. In the worst case, if the planner selects a3 instead of

a1 and a2, it may end up finding relatively a longer plan. �

We continue with a further discussion about POCL planning. A POCL planner starts

search with a null partial plan that keeps two dummy actions (a0 and a∞), and pro-

gresses over a search space of partial plans, by adding resolvers to a partial plan to

refine it completely. POCL planning separates the task of finding actions and their

placements for constituting a solution plan. We know that, a solution plan is a partial

plan with no flaws in it. Here each consistent linearization of a partial plan with no flaws

is a valid solution plan. For example, in Example 1, Figure 2.2, suppose the planner

selects the action a2 as a possible resolver which can provide a supportive causal link

for the open condition c (a precondition of a5) as well. In the above example, we saw

that a2 was capable of providing its support to both unsupported causal links c−→ a5

and a−→ a4. After adding action a2, this becomes a partial plan with no flaws in it. The

possible linearizations that are also the solution plans are a2, a4, and a5 or a2, a5, and

a4.
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oc5

Figure 2.2: The resulting partial plan after adding the two resolvers a4 and a5.

2.2.1 Why POCL Framework?

The POCL framework has certain advantages over forward state-space search (FSSS).

FSSS has the problem of premature commitment to an ordering between two actions

which reduces the plan flexibility. It does so to avoid any mutual interference between
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actions, though there may not be any. As we discussed, the POCL framework avoids

committing unnecessarily to ordering actions. FSSS faces problems while solving in-

stances with deadlines. Deadlines may arise within the interval(s) of one or more du-

rative actions. In general, the actions may produce some delayed effects, and this may

have ramifications on deadlines as well, which creates deadlines relative to their starting

points (Coles et al., 2010). FSSS also suffers from significant backtracking as it may

explore all possible plan permutations in the absence of effective guidance. In contrast

to FSSS, the POCL framework has several advantages in temporal planning, specially

in planning with complex temporal constraints beyond actions with duration (Benton

et al., 2012). These limitations of FSSS motivate us to explore the POCL framework.

An Illustrative Example

Suppose we are required to add four actions [a1, a2, a3, a4] to a plan, where a2 is depen-

dent on a1 and a4 is dependent on a3. There is no interference between any two actions

apart from the above dependencies. In this case, FSSS gives an ordering or timestamp

[0, 1, 2, 3], with a makespan 4, whilst the delayed commitment strategy would give

more choices with flexibility in the orderings like [2, 0, 1, 3] and [0, 2, 1, 3] (corre-

sponding to [a1 (0), a2 (1), a3 (2), a4 (3)]). If parallel execution is allowed, makespan

would be 2. If another action a5, which is dependent on a3, has to be introduced in

the plan then FSSS will allot it a timestamp 4, whereas delayed-commitment strategy

could allot it 1. We could consider some more examples which will strongly support

our decision of exploring the POCL framework (Younes and Simmons, 2003).

However, if we ignore the absence of the flexibility and action parallelism in FSSS,

it is very fast in recovering from a situation that would arise due to committing to

some wrong choices during planning. FSSS has the advantage of faster search state

generation and powerful state-based heuristics.

2.3 Non-Temporal POCL Heuristics

We deal with solving the STRIPS style planning problems effectively. However, there

seems not much has been done in recent years by the community. But researches
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have investigated the POCL framework in Temporal Planning and Multi-Agent Plan-

ning quite frequently. Some specific work has been done in the last decade by Nguyen

and Kambhampati (2001) and Younes and Simmons (2003) which handles solving clas-

sical planning problems. We can follow up some other work like (Penberthy and Weld,

1992), that is done in the early nineties after Systematic Non-Linear Planning (McAllester

and Rosenblitt, 1991). In this thesis, we only discuss some good heuristics designed in

RePOP (Nguyen and Kambhampati, 2001) and VHPOP (Younes and Simmons, 2003).

To the best of our knowledge, the heuristics discussed in the following subsections as

state-of-the-art heuristics.

The heuristic function described below, is based on the reachability analysis of the

partial states (hypothetical states) from initial state I using the planning graph data

structure (Blum and Furst, 1997). We treat all the OCs present in a partial plan as

making up a state. One has to be careful here how to deal with sets of predicates that

cannot be part of a state. Heuristics defined below in the rest of this section, are taken

from the POCL literature, and they are inadmissible ones. However, POCL planning is

not known for finding optimal plans. We work toward getting more effective plans by

improving the informativeness of these heuristics.

2.3.1 Relax Heuristic

One simple approach is to just count the number of open conditions (OC) in the partial

plan (Schubert and Gerevini, 1995; Joslin and Pollack, 1994).

hcount(π) = |OC|

hcount is usually an admissible heuristic, but when a set of OCs is a subset of initial state,

the heuristic becomes inadmissible, and there are a few more cases where it is inadmis-

sible. Various techniques have been proposed to cater to positive as well as negative

subgoal interactions (Nguyen and Kambhampati, 2000; McDermott, 1999; Bonet and

Geffner, 2001; Nguyen and Kambhampati, 2000; Hoffmann and Nebel, 2001). Nguyen

and Kambhampati (2001) address positive subgoal interactions using a serial planning

graph for the subgoal reachability analysis. Let level(p) be the level in the planning

graph when the proposition p first appears. Given a set of open goals S, let q be the last
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opengoal in the set S that appears in the planning graph. Then,

level(q) = maxqi∈Slevel(qi)

The previous state Sprev is given as follows after applying regression operator aq that

produces q,

Sprev = Scurr + precond(aq)− eff (aq)

where Scurr is current state, aq is the action which achieves the proposition q. The total

cost of achieving all the open conditions of Scurr is,

cost(Scurr) = cost(aq) + cost(Scurr + precond(aq)− eff (aq)) (2.3)

then,

hrelax(π) = cost(Scurr),

where Scurr = {p | p ∈ OC}, and cost(Scurr) is computed using last recursive relation.

The planning graph data structure (Blum and Furst, 1997) facilitates detection of a

proposition q in Scurr that has highest estimated cost from initial state I. We assert that

the elements of Scurr ∪ eff +(aq) should be mutex free where aq is the provider of q.

We hypothesize that this assertion results in a more accurate estimate incorporating the

negative interactions between the set Scurr and eff +(aq). This gives us a new improved

estimate as:

level(q) = maxqi∈{S∪eff +(aq)}level(qi) (2.4)

where q ∈ S ∪ eff +(aq), and it is expected that cost(Scurr ∪ eff +(aq)) ≥ cost(Scurr).

The modified formula for level(q) is a variation of the approach used for ranking partial

plans in RePOP. Since the assumption uses relaxed actions the level(precond(aq)) is

always strictly less than level(aq) therefore,

cost(aq) =

 0 if aq ∈ A;

1 Otherwise.

where A is the set of actions in the partial plan. We would like to give some thought to

this improvement in the near future.
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2.3.2 Additive Heuristic

The additive heuristic (Bonet et al., 1997) adds up the steps required by each individual

open goal. The assumption of subgoal independence that it makes has worked well in

many domains. However in many domains it has a tendency to overestimate the cost.

The heuristic value is estimated recursively. Suppose p is a proposition and A(p) is a set

of grounded actions that produce p. Then,

hadd(p) =


0 If p unifies with an atom in S0;

mina∈A(p)hadd(a) A(p) 6= φ;

∞ Otherwise.

(2.5)

and with the closed world assumption, the cost of an action is calculated by the formula

given below,

hadd(a) = 1 + hadd(precond(a))

The hadd(π) for POP is defined as:

hadd(π) =
∑

p−→aj∈OC(π)

hadd(p)

an action ap produces a proposition p and conditioned by r, so hadd(r) will be added to

the cost of ap.

2.3.3 Accounting for Positive Interaction Heuristic

Younes and Simmons (2003) address the positive interactions among subgoals while

ignoring the negative interactions. This estimation technique is used (as a variant of

hadd (Haslum and Geffner, 2000)) for ranking the partial plans for the first time by

Younes and Simmons (2003), which is defined in Eq. 2.6.

In Eq. 2.6, hradd(π) is the substitute for hadd(π) as the latter has no provision for

actions reuse. The underlying principle of POCL planning is that the resolver already
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present in the partial plan will used, if it is consistent.

hradd(π) =
∑

p−→aj∈OC(π)



0 ∃ak ∈ A such that an

effect of ak unifies with

p, and aj ≺ ak /∈ O;

hadd(p) Otherwise.

(2.6)

For any further details about these heuristic functions, we encourage readers to refer

these cited work (Penberthy and Weld, 1992; Nguyen and Kambhampati, 2001; Younes

and Simmons, 2003).

2.4 A Review of Learning for Classical Planning

We can say that Prof. Richard S. Sutton is one of the researchers who brings learning

into planning. In the last one and half decades, learning had appeared as an important

aspect in automated planning. It has shown very good results to the planning com-

munity. The state-of-the-art learning strategies are mostly associated with state-space

based approaches in planning. On the other hand, these successful strategies are not

tried in plan space to enhance the effectiveness of search techniques. In this section, we

discuss a few machine learning approaches successfully tried in the past. Some part of

this thesis has influence of the machine learning techniques discussed in the following

paragraphs. In the next paragraphs, we cover learning aspects in planning in detail.

This section covers some important literature related to learning in classical plan-

ning. At this stage, some part of the discussion might be only distantly related to our

current learning approaches discussed in this thesis. We intend to apply a few of the re-

maining techniques discussed next in the recent future. We briefly discuss some future

directions in the last chapter as well (Summary and Future Work).

2.4.1 Combining Multiple Heuristics via Learning

We discuss some machine learning techniques used in the planning literature like su-

pervised learning, unsupervised learning. Later, we discuss Bootstrapping and Active

Learning procedures employed by the community researchers.
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Learning from Multiple Heuristics via Supervised Learning

When more than one heuristic functions are available, taking their maximum is always

a good option in cost-optimal planning (Korf and Felner, 2002). However, in (Samadi

et al., 2008), the authors experimentally show that sometimes combining multiple avail-

able heuristics produces good results. This work was inspired from the evaluation func-

tion used in two-player games. The authors use Artificial Neural Networks (ANNs)

to combine multiple heuristic functions to come up with a single heuristic estimate

which has been tested on classical single agent domains, for example: 4-peg Towers

of Hanoi, and sliding-tile puzzle. In this work, the authors claim that ANN estimates

values close to the optimal values. ANN intelligently captures the mutual influence and

correlation among the different input feature heuristics. It is possible that many of the

feature heuristics used as input features to ANN, are overestimating (inadmissible by

their nature of design). To manage the weighted factors for each feature heuristic in the

combination obtained after tuning ANN, the authors give a modified cost function to

optimize. In this thesis, we have adapted this cost function and applied Gradient De-

scent algorithm to optimize the modified cost function. The modified ANN is known

as Penalty Enhanced ANN (PE-ANN). This modification penalizes the input feature

heuristics more which are exceeding the target value during the training phase. The

learned models are successfully tested by the authors on large sized problems that are

solved by single-agent.

In another approach, Michael Fink (2007) proposes an approach that learns heuris-

tics using an online learning approach which can find the shortest path between two

nodes in a graph (Fink, 2007). It uses elementary heuristic functions and suggests that

a weighted sum itself generates a dominating heuristic over the base ones. The as-

signment of weights to the elementary heuristic estimates is done empirically using an

online approach. The approach finds shortest path between any two nodes in a given

graph, and also reduces the required search effort. Michael Fink says that it is good to

take different views using different elementary heuristics as their weighted combination

can cover more of the underlying search space.

Thayer, Dionne, and Ruml (2011) give an online learning approach to combine mul-

tiple heuristics which generates a more informed, probably an inadmissible, heuristic

estimate (Thayer and Ruml, 2009). Their work is an improvement over a previous work
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that effectively combines different admissible heuristics. The combinations might lead

to inadmissibility but they would be more effective than the admissible ones on dif-

ferent planning standards. The previous offline approaches need training samples in

the beginning before the actual planning process starts. As this pre-computation might

be resource intensive for various planning domains, the authors use an online learning

approach that also perform instance specific tailoring. Some parts of this thesis are

based on the PhD dissertation of Jordan T. Thayer (Thayer, 2012). We extend a few ap-

proaches to POCL framework from this dissertation, e.g. the idea of TD learning. We

adapt this instant specific learning approach in POP with some changes that we discuss

in the coming chapters.

2.4.2 Bootstrapping and Active Learning

Bootstrapping has been one of the good approaches that the community has tried. It is

used to design a more informed heuristic for search algorithms like Best-First Search,

A∗, and IDA∗, or the heuristic search planners like Fast Forward, and Fast Downward.

In one approach, from a given base heuristic h0 and a set of unsolved planning prob-

lems, it generates a sequence of different heuristic functions (Arfaee et al., 2011, 2010).

The approach usually starts from a very weak heuristic and as the system solves more

training problems, new heuristic h1 gets generated. The assumption is that h1 would be

more effective compared to h0. This is particularly based on bootstrapping approach of

machine learning. In case, if a weak heuristic is not able to solve the given instance the

system uses random walk from the goal state. We skip other specific details here, and

encourage readers to refer (Arfaee et al., 2011) for further clarification. However, we

currently do not extend and use this approach. In future, unlike our current approaches,

this could be an option for us where it is not required to have an informed heuristic

estimate in the beginning of the planning process.

Domshlak, Karpas, and Markovitch (2010) claim that a heuristic function cannot be

best in all planning domains (Domshlak et al., 2010a). They say that, often, taking the

maximum from a set of numerous heuristic values at every stage of planning is not a

good idea in optimal planning. In such cases, it is required to compute each heuristic

estimate at every stage which might be time consuming. However, there is always a

trade off between the plan quality and number of states visited in finding a solution.

25



The authors give a novel approach that reduces the cost required to combine numerous

heuristics together, while retaining the benefits of combining multiple heuristics. In

this approach, to circumvent the trade-offs of combining multiple heuristics, a decision

rule is used for selecting a heuristic function in a given state. An active online learning

technique is applied to learn a model for that given decision rule. This method is called

Selective Max , that is applicable for any form of search problems, and the authors have

tested it on planning problems.

Another work uses Active Learning (AL) in an approach of improving the control-

knowledge acquisition for automated planning (Fuentetaja and Borrajo, 2006). The

approach solely depends on training examples. The training examples are generally

extracted in form of search tree that are generated during the procedure solves the prob-

lems. In this work, the authors suggest some AL strategies for producing training prob-

lems applicable for machine learning in lieu of solving different natures of planning

problems efficiently. They present a total three AL approaches that are independent

from normal planning processes and the employed machine learning approaches in the

literature. We refer readers to (Fuentetaja and Borrajo, 2006) for further details. Cur-

rently, we do not extend this approach as well, but plan to extend this approach in the

POCL framework in the near future.

The next section captures the recent advancements in classical and temporal plan-

ning. We confine our discussion to some good heuristic approaches used in classical

and temporal planning.

2.5 Recent Advancements in Heuristic Search

In this section, we discuss some recent topics covered in the literature of heuristic search

in classical and temporal planning. Contents presented in here is only distantly re-

lated to our currently employed approaches. Perhaps, the section covers some recent

advancements in the field of heuristic search. We have covered a few good heuris-

tic estimation techniques proposed in last fifteen years, involved in the enhancement of

planning processes, resulting in solving many problems efficiently that were intractable.

We also discuss a few temporal planning approaches, where heuristic search techniques

play important role. This section also covers a few temporal planners developed in
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the last one and half decades, where heuristic search has played a crucial role. The

approaches discussed in this thesis are expected to be efficient in a temporal set up too.

Next, we discuss some recent advancements seen in the field of heuristic search in

artificial intelligence planning. First, we cover approaches that have been extended and

employed in classical planning.

2.5.1 A Classical Planning Perspective

Most of the classical planning algorithms are domain independent in nature, and use do-

main independent heuristics. A set of many informed and rigorously designed heuristic

functions from the literature which have been employed in heuristic search for classi-

cal planning, has been based on the tractable set of planning problems. As we said in

the introduction, the main problem with these heuristics is that the known tractable set

of planning is still very small. This is specially the case if we consider cost-optimal

search in planning, where the employed heuristic should be admissible in nature. A

cost-optimal admissible heuristic function always underestimates the actual cost during

heuristic estimations. It has been observed that often a planning problem is intractable

for one set of heuristics, which is tractable for the other set. This happens due to in-

formativeness of heuristic functions for the case of that particular planning problem, of

course, the informativeness of a heuristic function strictly depends on its nature or the

way it is designed.

In the direction of heuristic search in planning, first, we discuss the work done by

Patrik Haslum and Hector Geffner in 2000. Here, the authors discuss the designing

of admissible heuristics required for optimal planning. This covers some highly rigor-

ously designed heuristic functions proposed during that time. The work is based on the

approach of overcoming the drawbacks associated with HSP and HSPr planners. How-

ever, these planners are competitive with Graphplan (Blum and Furst, 1995) and SAT

planners, but are not the optimal ones. The main contribution of the work of Haslum

and Geffner (2000) is to come up with a whole family of admissible and polynomial

heuristic functions that trade efficiency and accuracy (Haslum and Geffner, 2000). To

estimate an admissible cost for a set of atoms from initial state to the goal state, these

new heuristic functions are employed. In a case, when the set has only one atom in it,
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for that, the heuristic behaves like hmax (Bonet et al., 1997). Similarly, if the size of the

set is two, for parallel planning, the estimate is similar to the inbuilt heuristic estimator

of Graphplan. Perhaps, the heuristic does not consider the mutex relations, and also

does not bother building a layered graph. One of the advantages of admissible heuristic

is that we can safely prune a large part of state space, without losing on the optimality

of the final solutions.

Like the additive heuristic, hadd, the authors use relaxed problems to calculate newly

designed heuristics but the original problem and its relaxed version are formulated in

a quite different way. The original problems are treated as single source shortest path

problems. To solve such problems with action costs, c(a) > 0, they define a cost func-

tion, V ∗, for a node s. Here, V ∗(s) shows the optimal path cost from initial state to s.

The function is specified as a solution of Bellman Equation that is,

V ∗(s) = min〈s′ , a〉∈R(s)

{
c(a) + V ∗(s

′
)
}

where R(s) contains state action pairs 〈s′ , a〉 s.t. action a maps state s′ to s, and s

= f(a, s
′
). We skip further details from this thesis and refer readers to the original

work (Haslum and Geffner, 2000). They come up with admissible heuristics like max-

pair heuristic, and higher-order heuristic along with optimal heuristics for parallel plan-

ning. Note that, in this thesis, we discuss some approaches for systematic non-linear

planning (McAllester and Rosenblitt, 1991), where actions are allowed to be executed

in parallel. The designing strategies of inadmissible POCL heuristics like hadd(π) and

hradd(π), are not extended from the strategies used for these optimal heuristics. But,

these optimal heuristics are applicable in parallel planning like hadd and hradd in POCL

(non-linear) planning.

Another approach proposed by Joerg Hoffmann, utilizes the problem structure to

come up with a refined heuristic function (Hoffmann, 2003). Joerg devises an algorithm

for local search that employs this refined heuristic. The investigation on the success of

Fast Forward (FF) planner tells that most of planning benchmark problems share some

kind of structures. The structures imply specific characteristic qualities to the fast for-

ward heuristic, hFF, employed in FF planner. The heuristic is based on delete-relaxation

heuristics that use relaxed planning problems. To relax a planning problem, the general

idea is to ignore all the negative effects of the actions for the given planning problem,
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which sometimes causes loss of important information, resulting in too much gener-

alization. In this work, he suggests that it is important to exploit planning structures,

where delete-relaxation is quite successful. Therefore, the approach could be fast in

solving some intractable problems by exploiting the problem specific structures.

For the benchmark domains used to evaluate the performance of FF planner, he

comes up with the following observations.

• A total 15 out of 20 planning domains do not contain unrecognized dead-ends
during search.

• A total of 13 out of 15 domains do not contain any state that is not a solution,
and the heuristic estimates of such states are smaller as compared to the heuristic
estimates of their neighbors.

• An important observation made by him was related to helpful actions. In a total
10 out of 14 domains, if an action starts a shortest solution plan from a state s, it
also starts the shortest relaxed solution plan from s.

Many other observations have also been made by him, and the same can be found

in (Hoffmann, 2003), which are very effective in heuristic search for planning. In this

thesis, we are also motivated towards exploitation of the structures and properties of

planning problems using learning. However, there have been many other planners pro-

posed after FF planner, but FF planner remained one among the fastest planners for

quite some time. A couple of years later, a metric planner named Metric-FF comes, and

is completely based on FF planner (J.Hoffmann, 2003). Metric-FF planner is able to

handle metric fluents and optimizes metric cost functions. We refer readers to the cited

journal for further details of this planner.

Now, we briefly discuss another approach for devising a heuristic function and a

planning algorithm based on causal planning graph analysis (Helmert, 2004). The ap-

proach was influenced from the success of fast forward algorithm. However, in this

work, Malte points out the negative effects associated with the usage of relaxed prob-

lems during the estimation of hFF. The relaxation of a planning problem causes loss of

too much vital information during the heuristic estimations for some planning domains,

of course for those domains, the heuristic hFF does not perform well. At that time, for all

the known planners, detecting dead-ends for the STRIPS formalism was difficult. The

STRIPS formalism is usually uncertain about the causal structures of planning prob-

lems, and their importance in problem solving. However, sometimes, these structures
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are quite evident to human beings. To expose such underlying structures like dead-ends

detection for solving a planning problem, in this work, the author proposes an approach

of translating STRIPS problems to a multi-valued state variables representation. This

representation is also known as SAS+ planning representation (Bäckström and Nebel,

1995). Using this formalism, the approach proposed by him, exploits dead-ends in the

search space by employing an algorithm. The algorithm uses the heuristic estimates

which is completely based on hierarchical problem decomposition (Helmert, 2004).

In this thesis, we have seen the designing of a few informed non-temporal POCL

heuristics. There have been several informed heuristics proposed for classical state-

space planning in the literature. We briefly discuss a few of them, and also provide

with the important references for those effective heuristics proposed by the community

people in the past two decades. We avoid going into the details of these heuristics unlike

the first two well described approaches by us proposed by Joerg Hoffmann and Malte

Helmert, however, one can always follow the references for further details.

Figure 2.3 covers different classes of heuristic functions proposed in classical plan-

ning. The credit for this figure directly goes to Joerg Hoffmann, and it has been taken

from the planning course he offers at Sarrland University. It depicts many heuristics

designed and employed by the community researchers. Basically, the idea of heuristic

search has been divided into four classes as shown in the figure. We briefly introduce

each of them and also describe the relationships depicted between the heuristics in the

figure. Recently, Malte Helmert and Blai Bonet and their colleagues have proposed

potential heuristics, LP based heuristics (Seipp et al., 2015a) and flow-based heuris-

tics (Bonet and van den Briel, 2014), that have not been depicted in the figure, for

which relevant references have been provided.

Figure 2.3 clearly depicts the four general purpose methods for obtaining heuristic

estimates. They are: (i.) Delete Relaxation: solves simpler problems obtained from the

relaxations of the original problems, as we discussed in the case of fast forward heuristic

hFF. We also call this class Ignoring Deletes. (ii.) Critical Paths: focuses on achieving

n hardest atoms out of a total m atoms in a state s, where n ≤ m and hn(s) ≤ hm(s).

(iii.) Abstractions: that solves small sized planning problems, and (iv.) Landmarks: that

refers to the milestones achieved and remaining to be achieved. In further subsections,

we will briefly discuss all the classes of heuristics shown in the figure along with some
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Figure 2.3: Compilability between lower-bound h.

of the mutual relationships between the heuristics like ≤, ≡,�, and � that are built

between these heuristics in the figure. We do not describe any class of heuristics in

detail, perhaps some references have been provided to readers. Some delete relaxations

(like hFF) and landmarks based heuristics (like hLM-Cut) have been used in this thesis for

the several comparisons.

Delete Relaxations or Ignoring Deletes

There is an important aspect of heuristic search in planning, where the plan length of

simplified version of the problems are used to calculate the estimates for the original

planning problems. This simplification is done by relaxing some of the constraints for a
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given planning problems like ignoring the delete effects of the actions 1. However, this

does not allow the heuristic to capture the negative interactions between the actions,

sometimes that resulting in less informed heuristic. In this context, there have been

a few recent approaches employed in classical planning, and can be found in (Bonet

and Geffner, 2000; Mirkis and Domshlak, 2007; Haslum, 2012; Keyder et al., 2012;

Imai and Fukunaga, 2014; Keyder et al., 2014). Some of these approaches have been

employed in cost-optimal planning using delete relaxation. Note: the inability of finding

a solution for a relaxed problem implies that one cannot find a solution for the original

planning problem.

Critical paths

Critical path heuristics focus on achieving m hardest propositions during evaluating a

state S. It is an informative approach for which the hardness of estimating hm increases

with m, and it has been covered in the literature. To increase its informativeness, some-

times if the selected value of m is large, the heuristic value estimation resulting in a

tedious task. This may cause an ineffective planning, specially for large sized problems.

Also, for large m, it becomes almost as hard to evaluate as the original state.2 The crit-

ical paths for heuristic search in planning can be followed for further details (Haslum

et al., 2005; Coles et al., 2008a; Haslum, 2009) . This class of heuristics has not been

purposely tested in the POCL framework.

Abstractions

As the name suggests, a planner estimates about an original planning problem by solv-

ing smaller version of it. At a very high level, the original problem is projected to

a smaller search space. The estimator solves this projected version of the problem,

and uses that solution to have estimates for the original problem (Haslum et al., 2007;

Helmert et al., 2014; Sievers et al., 2015; Helmert et al., 2015; Sievers et al., 2014).

For example, if the original problem from Logistics domain, has 30 trucks, 100 pack-

ages, and 7 drivers. The abstraction resulting in a smaller and simpler problem that

1http://ai.cs.unibas.ch/_files/teaching/fs16/ai/slides/ai35.pdf
2http://fai.cs.uni-saarland.de/teaching/winter13-14/

planning-material/planning08-critical-path-heuristics-post-handout.
pdf
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might have 10 trucks, 50 packages, and 3 drivers. Once a planner solves this abstract

version, the solution found can be used for solving the original problem. The group led

by Malte Helmert @University of Basel has found some excellent approaches on the

usage of abstraction. To understand abstraction in a full fledged manner, readers are

referred to some recent approaches discussed in the classical planning literature (Katz

and Domshlak, 2008, 2009; Nissim et al., 2011; Domshlak et al., 2010b).

Landmarks

Hoffmann, Porteous, and Sebastia (2004) say that a landmark is a formula that must

hold at some point in time during the execution of each plan for a given planning prob-

lem (Hoffmann et al., 2004; Richter et al., 2008). We can fix the order of execution

of landmarks, while sometimes we also generate landmarks on the fly during the plan-

ning process. They are considered as landmarks to achieve, that also makes the search

more directed towards the goal. For example, suppose if we are inside the campus of

IIT Madras, and we need to go to the main gate from the department of CSE. For this

problem, plans must satisfy Gajendra Circle as a landmark. There is possibility of de-

signing admissible heuristics based on landmarks too (Helmert and Domshlak, 2011;

Pommerening and Helmert, 2013)

There have been several heuristics proposed by the planning community based on

landmarks (Bonet and Helmert, 2010). Most of the recent heuristics are quite informed

in the search space, while they are capable of tackling large sized planning problems

too. A landmarks could be either an action landmark or a fact landmark. The basic

strategy of generating landmarks for a given problem is based on Backward Chaining

algorithm. However, in general a landmark based heuristic function simply counts the

number of milestones yet to achieve (Richter and Westphal, 2010; Karpas and Domsh-

lak, 2009; Helmert and Domshlak, 2009). For a given problem, calculate a set (L) of

landmarks, and for a given current state S, landmark heuristic h(S) estimates the num-

ber of landmarks in (L), which have not been yet achieved on the route to S. In another

extension, Keyder et al. talk about generating a sound and complete set of landmarks

for an And/Or graph (Keyder et al., 2010). Its one possible extension can be seen as

generating a sound and complete set of landmarks for normal causal graphs.

In the previous paragraphs, at a very high level, we discussed the flavour of four dif-
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ferent classes of designing heuristics. Now, we describe some of the relationships be-

tween heuristics depicted in Figure 2.3. There are several types of relationships shown

in this figure like ≤, ≡, �, and �. We discuss only a few, and for other relation-

ships one can always refer to the online notes of Joerg Hoffmann (Saarland University),

and (Helmert and Domshlak, 2009) could also be referred. One relationship in the figure

depicts hLM
L � M&S, where the term � is a kind of simulation property. Here intuition

is that whatever we could achieve using landmark heuristic that can be achieved using

M&S as well. To be precise, each such estimate returns a lower bound on distance-to-

goal. However, the notation �, says that whatever lower bound we can calculate using

hLM
L , at least the same or a better lower bound can be calculated using M&S. Of course,

that is not true for the case shown in the relationship hLM
L � PDB.

Apart from these classes of heuristics, now a days the community also explores

the approaches based on Linear Programming (LP), and Integer Linear Programming

(ILP) (Pommerening et al., 2014, 2015), for designing heuristics. Roger et al. discuss

some LP based approaches that are helpful in designing informed heuristics for cost-

optimal planning. It is an interesting paper to be followed. We skip the details of the

LP approaches used for the formulations of the current heuristics like landmark based

heuristics. A couple of interesting work have been cited in this paragraph to be followed

in this context.

Next, we discuss some of the recent advancements in temporal planning. Temporal

planning is more suitable for modeling real world applications, and appears quite useful

as compared to classical planning. Here, we cover some important approaches proposed

in last one and half decades. This also includes the new search enhancements techniques

introduced for temporal planners. The discussion in the next subsection is not confined

only to the search techniques used in temporal planning. As per the context of this

thesis, it is suitable to discuss these approaches in detail. The POCL framework has

been quite successful for temporal planners in the past. We see our proposed approaches

for POCL planning in this thesis as possible extensions, and they can be tested in the

temporal planning setup too whether they are suitable. If we follow the current trend in

this direction, it is not easy for a researcher to reduce the performance gap that separates

out the partial order planning approaches involved in temporal planning, and the state

of the art temporal planners.

34



Figure 2.4: An old architecture for separating planning and scheduling. This high level
approach is employed in CRIKEY, which is adapted from (Halsey, Long,
and Fox 2004), and taken from (Planken, de Weerdt, and van der Krogt
2008) (Planken et al., 2008)

2.5.2 A Temporal Planning Perspective

We start the discussion with an old temporal planner called CPT (Vidal and Geffner,

2006). The POCL planners generally lack on the effective search space pruning strate-

gies, though they provide effective branching scheme. CPT introduces a Constraint

Programming based approach that combines the POCL branching scheme with strong

pruning rules. The novelty in the approach is the ability of the planner to reason out

about the precedence, causal links, and supports involving actions that are not part of

the plan. The evaluations demonstrate that, during 2004, it was one among the best

parallel planners, specially when all the actions have the same duration.

Another temporal planner CRIKEY (Halsey et al., 2004) got introduced during that

time frame. It is able to handle those domains where planning and scheduling are tightly

coupled. However, it solves the problems separately by separating out the temporal and

logical reasoning. The authors employ action compression in Relaxed Planning Graph

(RPG). It is also possible to allow a series of relaxations that can be tightened anytime if

necessary, to generate a plan. In the procedure employed, the critical thing is to find the

interaction point where the temporal and logical reasonings interact, as demonstrated
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in Fig. 2.4. The authors demonstrate the initial results in DriverLog domain and com-

pared them with FF planning system (Hoffmann and Nebel, 2001), and SAPA (Do and

Kambhampati, 2003). The reasoning takes place in CRIKEY is particular to PDDL2.1

representation (Fox and Long, 2003). The planner finds out a classical plan first, then

it lifts the unnecessary constraints to make it a partial order plan. Later, it checks the

consistency of the plan using Simple Temporal Network (STN). Here, one possible di-

rection of extension is that instead of generating a total order plan, if we can focus on

generating a partial order plan from the beginning. In CRIKEY, due to the nature of

separating out the temporal and logical reasonings, the approach is not very effective

in handling problems having deadlines, where actions required temporal coordination,

and if the actions are concurrent. It does not handle linear numeric changes too where

logical and temporal parts are interleaved.

Cushing et al. ask a question that is, “When can we say that temporal planning

really temporal?” (Cushing et al., 2007). They come up with answers for the issues like

whether temporal benchmarks do capture the essential aspects of temporal planning.

Most of the decision epoch planners enable the search to be carried out in state-space,

so that they can utilize strong state-space based heuristics. Those heuristics are de-

signed and developed for classical planning instead of temporal. However, there are

severe weaknesses like incompleteness, are associated with these planners due to this

practice. In a few cases, STN does not find any consistent orderings of the actions, spe-

cially when actions are concurrent, and where good reasoning is required. The authors

raise another question whether we can make decision epoch planners complete while

retaining all their advantages. In this regard, they come up with an effective state-space

based temporal planning algorithm that helps decision epoch planners in achieving the

completeness by retaining the quality performance (Cushing et al., 2007).

Influenced from the above discussed works of Cushing et al., to overcome the is-

sues associated with CRIKEY, Coles et al. come up with a temporal planner called

CRIKEY3 that is based upon CRIKEY. The planner is capable of reasoning with com-

plete semantics of PDDL 2.1 along with numeric constraints (Coles et al., 2008b). It

uses heuristic forward search for managing durative actions. To make sure that all the

temporal constraints are meeting CRIKEY3 employs STN, and for guiding the search

the authors introduce a variant of Relaxed Planning Graph that can handle temporal

actions. This variant is also known as Temporal Relaxed Planning Graph (TRPG).
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However, CRIKEY3 does handles temporal and numeric interactions, also it does not

handle Timed Initial Literals (TILs) (Hoffmann and Edelkamp, 2005) directly. TILs are

exogenous events that happen to be TRUE at a particular time frame during the plan-

ning process like a shop opens at 10AM, and closes at 11PM. CRIKEY needs a com-

piled version of TIL (PDDL2.2 (Edelkamp and Hoffmann, 2004)) to handle it, perhaps

on the other hand CRIKEY3 handles TIL directly (Coles et al., 2008b). The techniques

like detecting cycles in STN, employed in CRIKEY3 make sure that generated plan is

sound. For further details we refer readers to (Coles et al., 2008b).

In another approach of temporal planning the authors consider planning problems

with continuous linear numeric changes. Such problems are quite interesting to model,

which is not always possible using the older approaches like action discretization or

action compressing employed in CRIKEY3 (Coles et al., 2009). The authors show that

it is possible to extend the forward-chaining planners to reason out with the continuous

linear numeric changes. The authors continue by elaborating on temporal planning

strategies which forms the basis of the temporal planner named COntinuous LINear

(COLIN) process planner, which can handle linear changes. To track these changes

effectively, they employ Linear Programming (LP) approaches (Coles et al., 2012). The

LP is used to examine the validity of search states as well as scheduling actions in a plan.

They employ temporal numeric heuristics to guide the search which is required to solve

planning problems with continuous changes. The work empirically demonstrates that

their approach handles smartly the time dependent numeric changes.

A recent approach of finding Temporal Landmarks (TL) to solve a temporal plan-

ning problem, is quite interesting. Marzal, Sebastia, and Onaindia (2014) introduce the

usage of TL for solving planning problems with specified deadlines. They propose a

temporal landmark planner called TempLM that handles deadline constraints. There are

several real world applications of such approaches that solve temporal planning prob-

lems with goal deadlines like delivery of goods, and supply-chain activities. TL could

be either a fact landmark or an action landmark. A proposition (TL) must be achieved

in a plan to satisfy the deadline constraints specified in the problems (Marzal et al.,

2014a). There are three annotations associated with each TL which describe the inter-

val of its temporal occurrence along with logical and temporal consistencies. As more

number of constraints violate with the progress of planning process, the planner prunes

plans from the set of solution plans. TempLM builds temporal landmark graph for each
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problem which, structurally, looks like a solution plan. The authors employ an adapted

version of hLM-Cut heuristic (Pommerening and Helmert, 2013) proposed by Helmert

and Domshlak (2009), in the employed heuristic search algorithm.

Temporal landmarks based approaches have shown good improvement in the last

couple of years in solving temporal planning problems. The procedure employed to

find out all TLs in the previously discussed work is not effective in some cases like if

there is no deadline associated with a planning problem. Hence, finding causal LMs, as

proposed in (Marzal et al., 2014a), would not be effective enough, resulting in yielding

less benefits. To overcome this issue, Karpas et al. proposed an approach of finding

LMs which suggests which LM should appear in a plan, and when (either a time interval

or particular time during the plan execution) it must appear (Karpas et al., 2015).

Karpas et al. come up with an effective procedure for generating sets of fact and

action temporal landmarks for a given temporal planing problem. Usually Backward

Chaining is employed in classical planning to generate sets of landmarks for a given

problem. In this work, the authors also employ the same approach for TLs genera-

tion. For a given problem, the procedure of finding the sets of LMs is sophisticated due

the derivation rules used to find out the temporal constraints over the occurrences of

those LMs (Karpas et al., 2015). The authors also compare their strategy with the one

used in TempLM (Marzal et al.’s), they consider an example problem from Matchcel-

lar planning domain, and theoretically demonstrate that TempLM struggles in finding

out informative landmarks due to the absence of a deadline and some strong action

dependencies in the problem.
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Chapter 3

LEARNING FROM EXISTING INADMISSIBLE

HEURISTICS: SUPERVISED APPROACHES

In recent International Planning Competitions (IPC) state-space based and total-order

planners like LAMA (Richter and Westphal, 2010), Fast Downward Stone Soup (Helmert

et al., 2011), and Fast Downward Stone Soup 2014 (Röger et al., 2014) have performed

well. These planners are very efficient, generate consistent states fast, and use powerful

state-based heuristics. But they often commit too early to ordering of actions, giving

up on flexibility in the generated plans. In contrast, the POCL framework (Coles et al.,

2010) generates more flexible plans, but in general is computationally more intensive

than the state-space based approaches. The POCL framework has found applicability in

multi-agent planning (Kvarnström, 2011) and temporal planning (Benton et al., 2012).

Researchers have recently investigated the applicability of state-space heuristic learn-

ing approaches (Sapena et al., 2014; Coles et al., 2010) in POCL planning. This revival

of interest is due to the idea of delayed commitment of RePOP (Nguyen and Kambham-

pati, 2001) and VHPOP (Younes and Simmons, 2003). For this approach, we further

investigate the adaptation of state-space approaches in POCL planners yielding quality

plans over the same or even larger problems. As we stated earlier, in general, due to

the diverse nature of planning problems characterized by the degree of interactions be-

tween subgoals, a heuristic function does not always work well in all planning domains.

Various techniques have been devised to increase the informativeness of heuristics in

the state-space arena. One approach strengthens the delete relaxation heuristic by in-

crementing lower bounds to tighten the admissibility of the heuristic, repeatedly by

solving relaxed versions of a planning problem (Haslum, 2012). In another approach,

to circumvent the trade-offs of combining multiple heuristics, a decision rule is used

for selecting a heuristic function in a given state. An active online learning technique is

applied to learn a model for that given decision rule (Domshlak et al., 2010a).

We can say that, in recent years, the community has realized that techniques for

learning from heuristic functions show great improvements in performance of state-



space based planners. One could possibly use an approach of domain wise supervised

learning to learn predictive models from existing heuristics. These learned models can

be deployed as new heuristic functions.

3.1 Motivation

In the last one and half decades researchers have also investigated the use of heuristics

derived from state space approaches (Nguyen and Kambhampati, 2001) in POCL plan-

ning (McAllester and Rosenblitt, 1991) (Penberthy and Weld, 1992). POCL planning

has the advantage of greater flexibility during the plan execution (Muise et al., 2011)

relative to sequential planning. Following the current trends in learning for planning,

we base our idea of developing a new informed heuristic function using old heuristics,

and our focus here is to learn to combine different heuristics.

In the first learning approach that employs ANNs, where we intend to learn admis-

sible combinations of heuristics though it is not guaranteed. We adapt the use of neural

networks to combine heuristic functions (Samadi et al., 2008) in the POCL framework.

This approach uses a different error function, from the usual one where we try to mini-

mize mean-squared-error, that penalizes those features more which have values higher

than the target value. The complete goal is to incorporate a learning mechanism that

further improves the performance of a RePOP (Nguyen and Kambhampati, 2001) or

VHPOP like planner in a given domain by training the neural network to combine the

available heuristic functions. Our results demonstrate that the planner does indeed learn

a different way of combining heuristic functions over different domains. The basic idea

behind this approach is that different heuristic functions take a different view of the cur-

rent problem and arrive at different estimates of the distance to the goal. While some

functions may grossly underestimate the distance in some domains, others may overes-

timate the distance in different domains. We adapt an approach that extends the usage of

a set of solved examples in a domain to learn a suitable combination of heuristic func-

tions for that domain. Further, when a search algorithm has partial plans as candidate

nodes in the plan space, the notion of “distance” (a heuristic estimate) intuitively spec-

ifies that the amount of work needs to be done (number of refinements) by the planner

to transform a node to a solution plan.

40



Here, we implicitly assume that the faster planning process will be resulting in bet-

ter solution plans. The experiments reported here demonstrate that this approach of

learning to combine heuristics does well on different domains.

A set of regression techniques is employed to combine multiple existing heuris-

tics. In the second approach, we propose a learning technique applicable in the POCL

framework. Unlike the first offline learning approach, here, we do not force on ad-

missibility of the learned combination heuristics, rather we try to learn only effective

combinations. They are tested very effectively on different planning benchmarks. Our

approaches are influenced from the literature of learning for planning (Arfaee et al.,

2011; Thayer et al., 2011; Samadi et al., 2008; Virseda et al., 2013), that improves

the effectiveness of heuristic search in the POCL framework. We apply domain wise

regression techniques in a supervised manner, using existing POCL heuristics as fea-

tures. For generating the targets in each domain, we use our planner called RegPOCL,

that is based on VHPOP and uses grounded actions to speed up the planning process.

RegPOCL planner employs these two approaches and evaluation shows that it is more

efficient on the benchmarks. We have confined the evaluation to non-temporal STRIPS

domains.

In the coming sections, we discuss some supervised approaches that have been em-

ployed to learn from existing heuristics. We start with a regression approach based on

ANN that focuses on admissibility of the learned predictive models. However, one can-

not guarantee the admissibility of meta-heuristics as machine learning techniques have

been employed. We then discuss another approach based on supervised learning. Sim-

ilar to the earlier approach, we employ several regression techniques to learn effective

domain wise combinations of existing heuristics. The focus of current approach is to

make the POCL planning faster as compared to the state-of-the-art.

Next, we discuss a supervised learning approach for combining multiple existing

heuristics by employing ANNs.

3.2 Supervised Learning: Artificial Neural Networks

This section covers the first supervised learning approach where we focus on admissibil-

ity of the learned combination heuristics. As we said, to combine multiple inadmissible

41



heuristics we employ ANNs and their variants. For learning different regression mod-

els, here we use a different error function from the regular mean-squared-error function

(explained later in this section). We give the reason behind this, and describe later in

this section. While we train a network, we back propagate the associated error with each

prediction for the given training instance. This changes the weight vector accordingly

after every iteration in the training phase, here, we randomly provide the initial weight

vector. For error optimization, we use Gradient Descent algorithm. As we said earlier,

the error function focuses on the admissibility of generated meta-heuristics. An ANN

that uses this new kind of error function (defined later) is called as Penalty-Enhanced

ANN (PE-ANN). Currently, we do not test properly whether PE-ANN actually helps a

POCL planner in achieving good quality plans with less effort. However, experiments

demonstrate that these learned networks produce effective combinations of heuristics.

3.2.1 Feed-Forward Artificial Neural Networks

The basic idea in this part of our work is to estimate a heuristic value from the values

returned by a set of existing heuristic functions. Following the work (Samadi et al.,

2008) we use an artificial neural network (ANN) (Mitchell, 1999) to define the estimate

in terms of inputs. Given that some of the input values may be gross overestimates, we

need to train a network so as to penalize inputs that are larger than the (known) target

value in each training example. The estimates have been combined using a variant of

ANN called Penalty-Enhanced Artificial Neural Network (PE-ANN) (Samadi et al.,

2008).

Artificial Neural Networks

Fig. 3.1 shows an ANN with Y as target variable and xi for i ∈ {1, 2, ..., 6} as input

variables. The error function E(t) is defined as E(t) = θ(t) − Y (t) where θ(t) is the

predicted value and Y (t) is the target value. The mean-squared error (MSE) is given as,

MSE =
Σt∈XE

2(t)

|X|

where X is the training data. The MSE is a symmetric function that penalizes the error

on both sides equally. To maximize the effects of algorithms like WA∗ (Pearl, 1984),
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Figure 3.1: Artificial Neural Network

IDA∗ (Korf, 1985) or dynamically weighted A∗ (dWA∗) (Thayer and Ruml, 2009), we

penalize the model predictions that are higher than the target value more than the ones

that are lower. This results in our predications being by and large lower that the target

value. Consequently we can use uniform weight factors for the heuristic functions, for

combining them, over different planning domains. But, these weight factors will be

learned for each domain, in a supervised manner. In future, we intend to test these

newly learned meta-heuristics (learned from multiple heuristics) in planning algorithms

that are used to solve planning problems.

We decide to penalize the overestimating heuristic values more than the underesti-

mating heuristic values irrespective of whether the combined heuristics or the individ-

ual ones are admissible or not. The PE-ANN model addresses this concern and its error

function (Samadi et al., 2008) given below is biased towards underestimation,

Enew(t) =

{
a+

1

1 + exp
(
− b× E(t)

)}× E(t)

here a and b are experimental constants which decide the slope of the error curve,

Enew(t) regulates the penalization criteria for (E(t) > 0) and (E(t) < 0), where

E(t) > 0 is penalized more.

We have used a variation of PE-ANN in which a regularization term (L2-norm) (Bishop,

2006) in the error function is introduced. This follows evidence that regularization de-
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creases the tendency of overfitting when the size of the training set is smaller than what

is ideally required. This is often the case in a planning domain (for example the Towers

of Hanoi) where the number of different instances that can be solved are not many.

A brief description of the approach is as follows. For each planning problem in

the training set, we have a set of n heuristic values along with the target value that is

calculated using Graphplan (Blum and Furst, 1995). The training data is used to learn

the weights for the PE-ANN using a suitable error function that determines the weights

that are learnt. The error functions we use are described later. For a new (test) instance

t, we input the n different values from the existing heuristic functions to the trained PE-

ANN model to predict the heuristic value θ(t). The heuristic value at the output node is

instrumental in deciding which of the candidate partial plans is selected for refinement.

A similar approach has shown very good results in state-space-planning in the

past (Samadi et al., 2008). By looking at the flexibility associated with POCL frame-

work as we discussed in the previous chapter, we have implemented a version of plan

space planning that uses fully grounded actions instead of partially instantiated opera-

tors. In doing so, we do give up on the least commitment strategy, but gain in speed-up

of execution (Younes and Simmons, 2003, 2002; Nguyen and Kambhampati, 2001).

Younes and Simmons (2003), and Younes and Simmons (2002) have shown the advan-

tages of POCL planning with lifted actions as well. Therefore one extension could be to

explore the possibility of reverting to partial plans with lifted actions. In the following

section we describe the approach for training of neural networks.

Penalty Enhanced Artificial Neural Networks

The following properties are desired in a underestimating heuristic function. The larger

the heuristic value, the more will be the search space pruned by the algorithm. In ad-

dition if we require the algorithm to be admissible it is imperative that the heuristic

function underestimates the actual distance. Here the idea is not bound to strict admis-

sibility of heuristic functions in any form (either individually or combined).

In POCL setup, a partial plan (π) is a node in a the space of partial plans, the function

used by WA∗ for selecting a candidate is: f(π) = g(π) + w × h(π). Here, g(π) is the

number of actions in π, and h(π) is the heuristic value that estimates the number of
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refinements required to resolve the remaining flaws, w is the weight factor.

The heuristic value h(π) thus plays a crucial role in the selection process of π from

a set of candidate partial plans. Previous work has indicated that one heuristic function

does not perform equally well in the domains. To address this drawback, we utilize

PE-ANN model to yield often underestimating estimates for πs by combining multiple

heuristic functions together.

The PE-ANN model uses the gradient descent approach in the algorithm Backprop-

agation to learn the weights starting from randomly initialized weights. The weight

update rules with regularization using L2-norm, and the gradient descent process are

described below.

3.2.2 The New Weight Update Rules

The error function defines a surface over which gradient descent seeks the minimum.

The error function employed in the PE-ANN imposes higher penalties on edges that

transmit the signal from overestimating inputs. The network then learns to suppress

such inputs and generate an output that is lower than the target value. In addition since

our PE-ANN model uses the L2-norm, the cost function is devised as follows,

E ′(t) =
N∑
i=1

{
a+

1

1 + exp
(
− bE(t)

)}× E(t)

+ γ ×
(∑

m

β2
m +

∑
m

∑
l

α2
ml

)

where E ′(t) is error for an instance t, a and b are the parameters that are set empirically,

γ is the regularization coefficient, l is the number of nodes in the input layer, m is the

number of nodes in the hidden layer, and α and β are the weight of the emanating edges.

We propose the weight update rules for the PE-ANN for newly introduced cost

function with regularization. The squared error function used for the minimization

problem is given below.

R(θ) =
N∑
i=1

{(
a+

1

1 + exp
(
− b(T − Yi)

))× (T − Yi)
}2
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R(θ) =
N∑
i=1

{(
a+ σ

(
b(T − Yi)

))
× (T − Yi)

}2

whereR(θ) is sum of the Squared Error that is also represented asR(α, β), T is the pre-

dicted output T = β0 + βT z, Yi is the target value, a and b are experimental parameters,

and N is the number of training instances in the training set. In the above expression T

is dependent on vector z, where mth element of z is,

zm = σ(αm + αTmx) =
1

1 + e−(α0m+αT
mx)

here, σ(x) is a sigmoid function over x. The partial derivative of R(θ) wrt βm is,

∂R(θ)

∂βm
= 2× E ′(t)× ∂E ′(t)

∂βm

The partial derivative of σ(x) w.r.t. x is given as, ∂(σ(x))
∂(x)

= σ(x) ×
(
1 − σ(x)

)
. In

order to minimize R(θ), we are required to assess its sensitivity to each of the weights.

We take the partial derivative of R(θ) with respect to each of the weight parameters to

calculate the effect of changing weights. Simplification of the partial derivatives gives

final weight update rules corresponding to α and β with L2-norm as regularization. The

weight update for the weight vector β is quantified as,

∂R(θ)

∂βm
= 2×

(
a+ σ(b(T − Yi))(T − Yi)

)
×
{
b× σ

(
b(T − Yi)

)
×
[
1− σ

(
b(T − Yi)

)]
× zm

× (T − Yi) +
[
a+ σ

(
b(T − Yi)

)]
× zm

}
+ γ × 2β

Similarly, the weight update for the weight matrix α is quantified as,

∂R(θ)

∂αml
= 2×

(
a+ σ

(
b(T − Yi)

)
× (T − Yi)

)
×
{
b× σ

(
b(T − Yi)

)(
1− σ

(
b(T − Yi)

))
× βm

∂
(
σ(αTmx)

)
∂(αml)

(T − Yi) +
[
a+ σ(b(T − Yi))

]
× βm

∂
(
σ(αTmx)

)
∂(αml)

}
+ γ × 2α
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where the regularization coefficient γ > 0, and

∂σ(αTmx)

∂αml
= σ(αTmx)

(
1− σ(αTmx)

)
xl

From above equations, the gradient descent weight update rules for parameters α and β

for a single training instance in rth iteration are obtained and given as follows:

αr+1
ml = αrml − ηα ×

∂R(θ)

∂αml

βr+1
m = βrm − ηβ ×

∂R(θ)

∂βm

where ηα and ηβ are the learning rates that may get different values for the gradient

descent rules. The γ ∗ 2β and γ ∗ 2α factor can be removed from the update rules in

order to train PE-ANN without the regularized cost function. The specific details of the

parameters values in our experiments are given in tables for each domain.

3.2.3 Multiple Heuristics

An efficient POCL planner does a controlled search in the plan space. It attempts to

minimize search (the number of flaw resolutions) by making proper choices during

planning process (Schubert and Gerevini, 1995). A good strategy is to select the most

demanding flaw and a refinement that leaves the minimum refinements to be done sub-

sequently. There are good flaw selection techniques based on Most-Cost or Most-Work

etc, associated with the flaws (Younes and Simmons, 2003). One possible way of se-

lecting a partial plan from the queue is based on the minimum number of actions needed

to resolve all the open conditions in it (Nguyen and Kambhampati, 2001). We consider

the definition of h∗(π) from (Nguyen and Kambhampati, 2001) which says, for given

a partial plan π, h∗(π) gives the minimum number of new actions required to convert a

partial plan to a solution plan. However, a similar definition can also be found in (Pen-

berthy and Weld, 1992). In this work, the authors introduce a POCL planner named

UCPOP. This is one of the oldest planners that handles Action Description Language

(ADL) representation. Next, we briefly describe the nine heuristics used as features for

learning. For further details we refer readers to the given pointers. The last six heuristics

solely based on the reachability analysis done using planning graph data structures.
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1. hmax(π) : Max Heuristic

The simplest heuristic hmax counts the number of steps required individually for each

open goal, and takes the maximum value. In the state-space planning, this is likely to

grossly underestimate the cost and is less informed than hadd described next. But in

the POCL framework there are cases where it overestimates as well. The admissibility

depends on the availability of OCs of a partial plan in the start state. It is considered a

good choice in the case of overlapping states.

hmax(p) = min{hmax(p), 1 + hadd(precond(a))} (3.1)

hmax(S) = maxp∈S h(p) (3.2)

Here hadd(precond(a)) is
∑

q∈precond(a) hmax(q).

2. hadd(π) : Additive Heuristic

We have already defined this heuristics in Chapter 2. It adds the total effort needed to

achieve each proposition in a state. We avoid repeating the same text here. For further

details refer to the section 2.3.2.

3. hradd(π) : Positive Interaction Heuristic

We have already defined this heuristics in Chapter 2. We avoid repeating the same text

here. For further details refer to the section 2.3.3.

The heuristic functions defined below in this thesis, are based on the reachability

analysis of the partial states (hypothetical states) from initial state I by planning graph

data structure (Hoffmann and Nebel, 2001). We extend the use of state-space heuristic

functions in plan space planning (Nguyen and Kambhampati, 2000), in order to impose

a tight bound on the value. We treat all the OCs present in a partial plan as making up

a state. One has to be careful how to deal with sets of predicates that cannot be part of

a state.
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4. hrelax(π) : Relax Heuristic

Again, we have already defined this heuristics in Chapter 2 as a part of base heuristics.

We will not repeat the same text here. For any details about this heuristic refer to the

section 2.3.2.

5. hset−level(π) : Set-level Heuristic

We altered and use hset−level(S) proposed in (Nguyen and Kambhampati, 2000) for

plan space search where its usage depends on the preprocessing step (the assumption of

hypothetical state S). For a given partial plan, S contains all the open conditions present

in the partial plan. The altered heuristic hset−level(π) is equal to level(S).

hset−level(π) = level(S).

6. hpartition−2(π) : Partition-2 Heuristic

Nguyen et al. have shown that in certain cases hset−level(S) estimates the same numer-

ical values for two different states (Nguyen and Kambhampati, 2000). To overcome

this, hpartition−2 is devised and that is adapted for POCL planning as, hpartition−2(π) =∑
Si
lev(Si).

7. hadjust−sum(π) : Adjust-sum Heuristic

We adapt the idea—proposed by Nguyen and Kambhampati (2000)—discussed in the

previous heuristic function where we state that

level(S − p1) ≤ level(S)

p1 is achieved first and by the time (S − p1) is achieved, it may clear the achieved

proposition p1 because of negative interactions. In this case, level(S − p1) 6= level(S)

when we achieve p1 again. Following this argument (Nguyen and Kambhampati, 2000)

we state that,

cost(S) = cost(S − p1) + cost(p1)
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If p1 and any proposition p from (S−p1) are mutex, then taking the negative interaction

between the propositions into the account we arrive at the following,

cost(S) = cost(S − p1) + cost(p1) + (level(S)− level(S − p1))

In a similar manner, we can also write as specified in the next equation, and so on the

chain continues until S becomes φ.

cost(S − p1) = cost(S − p1 − p2) + cost(p2)

+ (level(S − p1)− level(S − p1 − p2))

Simplification of above sequence of relationships leads to,

cost(S) =
∑
pi∈S

cost(pi) + level(S)− level(pn)

The last proposition of the set S is pn, and the corresponding equation for the POCL

framework is,

hmax(π) = level(pn)

hadjust−sum(π) = hadd(π) + hset−level(π)− hmax(π)

8. hadjust−sum2(π) : Adjust-sum2 Heuristic

The heuristic is adapted from Nguyen and Kambhampati (2000) and used for search

in the plan space. The estimation of Cost(S) is time consuming as compared to

hadjust−sum(S) however it often produces near target solutions except for a few do-

mains (Nguyen and Kambhampati, 2000). The altered heuristic hadjust−sum2(π) formu-

lation is,

hadjust−sum2(π) = hrelax(π) + hset−level(π)− hmax(π)

The heuristic (in state-space search) performs better when we consider binary-mutexes (Ni-

genda et al., 2000) also known as hadjust−sum2M heuristics (used in alt-alt planner (Ni-

genda et al., 2000)) that combines planning graph data structure and heuristic search.
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9. hcombo(π) : Combo Heuristic

We alter the definition of hcombo given by Nguyen and Kambhampati (2000) and con-

sider its variation called hcombo(π) defined as,

hcombo(π) = hrelax(π) + hset−level(π)

We use hrelax(π) as relax heuristic is more accurate in most of the planning domains

compare to hadd (Younes and Simmons, 2003).

Even though Graphplan may sometimes give solutions that have more than the min-

imal number of actions in some domains, has been used for the calculation of target

values (htarget) for smaller sized problems. It is difficult for the Graphplan algorithm to

find solutions for bigger problems in the given time as it uses fully instantiated opera-

tors. Therefore, Graphplan takes inordinate amount of resources to grow fully, specially

in the case of high correlations between the actions and the interactions among the sub-

goals. For some of the planning domains (e.g. Towers of Hanoi) we observe the lack

of sufficient training instances for our model. We do not consider those domains but

if sufficient training instances available we use basic regularization (L2 norm) factor in

the PE-ANN error function.

3.2.4 Empirical Evaluation

We perform the experiments on Intel Core 2 Quad with 2.83 GHz 64-bit processor and

4Gb of RAM. These experimental results are the basis for the claims made. We present

the results obtained by PE-ANN with and without regularization. The results demon-

strate that penalizing the overestimates more does tend to keep the output heuristic

within the target value.

The datasets used in our experiments are generated as follows. The partial plans

for which the heuristic value is to be estimated are generated by our implementation of

VHPOP. The target value for each partial plan is obtained by treating the open goals in

the partial plan as the goal, which is then solved by the algorithm Graphplan. We use the

relaxed version of Graphplan. In this version, actions used are relaxed by removing the

list of their delete effects. However, this version is a part of many state-of-the-art work
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like latest variants of Fast-Downward (Helmert, 2006) use it for finding landmarks. It

also helps in calculating the values of different heuristics discussed previously, where

we consider a hypothetical state, S. For those sets of open goals that cannot be part of

any consistent state, and for which Graphplan cannot find a plan, we set the target to

infinity and we exclude them from the set of training examples. In a result, we exclude

all partial plans for which Graphplan can not find a solution and hence all those for

which S does not constitute a consistent state as well. This indicates that sometimes

the extracted training instances for a partial plan will be removed from the training

set because of the large cost. Consequently some instances extracted for some partial

plans will not be accommodated in the training set. We intend to resolve this drawback

with the approach of inadmissible heuristic functions learning (Thayer et al., 2011) or

bootstrapping (a completely unsupervised approach) (Arfaee et al., 2011).

Dataset Preparation

Our datasets are made up of estimated and actual plan costs, with integer values. An

example dataset is shown in Table 3.4. Each row in the table has the heuristic values

computed by the functions described in the preceding section, and the last column is the

target value (htarget) found by Graphplan. Observe that the datasets used for training

are complete in all respects and do not have any missing values. The dataset preparation

phase took some order of hours (4-5) for each domain. However, as mentioned earlier,

problems like the Towers of Hanoi produce only small datasets, since even moderately

sized problems cannot be solved by Graphplan within a time limit of 15 minutes. The

details of the number of training instances and other parameters have been specified

below the respective tables.

Performance Evaluation

The results of our experiments in three domains are presented in Tables 3.1 to 3.3, each

with the data from five test instances (we generate all possible 〈〈h1, h2, ..., h9〉, htarget〉
pairs by solving a smaller sized problem, solve many such problems and pick randomly

five instances from the validation set for testing). For each test instance, the tables show

the lowest and the highest heuristic estimates, hlow and hhigh, from the nine heuristic

functions that provide the inputs to the neural networks. Also shown is the target value
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Ins hlow hhigh htarget htargetclosest

PE-ANN Using L2 norm
hpredicted hclosest hval hpredicted hclosest hval

1 3 18 9 hvhpop 10.05 hvhpop 7 8.97 hvhpop 7
2 2 10 10 hcombo 11.32 hcombo 10 9.13 hcombo 10
3 6 15 12 hpartition−2 6.25 hvhpop 6 7.0 hset−level 7
4 4 19 11 hset−level 6.27 hmax 4 6.95 hset−level 9
5 6 14 11 hcombo 6.28 hvhpop 6 6.98 hset−level 7

Table 3.1: The Blocksworld domain, the fixed parameters: |X| = 955, a = 1.0, b = 3.0,
after cross-validation: γ = 0.1, Lrates ∈ [0.6, 0) and 13 nodes in the hid-
den layer with all 9 features. The terms hlow and hhigh are the minimum
and maximum values of the features of the instance (t). htarget is the target
value, calculated using Graphplan, while htargetclosest indicates the feature heuris-
tic function closest to htarget. Here, hclosest indicates the feature which has
its value closer to the predicted output and hval is the value of the closest
heuristic. The tables similar to this have condensed captions further in this
section.

Ins hlow hhigh htarget htargetclosest

PE-ANN Using L2 norm
hpredicted hclosest hval hpredicted hclosest hval

1 3 24 13 hpartition−2 5.82 hvhpop 8 5.97 hvhpop 8
2 5 20 17 hpartition−2 15.80 hpartition−2 15 15.11 hpartition−2 15
3 3 20 11 hvhpop 5.78 hvhpop 9 5.96 hvhpop 9
4 3 12 12 hcombo 15.27 hcombo 12 12.12 hcombo 12
5 2 8 10 hset−level 5.76 hvhpop 7 7.87 hvhpop 7

Table 3.2: The Elevator domain, the fixed parameters: |X| = 724, a = 1.0, b = 3.0, after
cross-validation: γ = 0.01, Lrates ∈ [0.6, 0) and 10 nodes in the hidden layer
with all 9 features. The terms hlow and hhigh are the minimum and maximum
values of the features of the instance (t). Here, htarget is the target value, cal-
culated using Graphplan, while hclosest indicates the heuristic function which
has its value closer to the predicted output and hval is its value.

htarget computed by the algorithm Graphplan with the set of open goals in the partial

plan treated as the goal. For each test instance the heuristic estimate generated by both

the PE-ANN and the regularized PE-ANN networks is shown along with the heuristic

function that matches the predicted value the most. In cases where the predicted es-

timate is lower than hlow the corresponding heuristic function is left blank (like some

entries in Table 3.2). We hazard a guess that the predicted value is lower than all the

inputs because of the non-linear nature of the combination produced by the neural net-

works in which the penalty for some inputs pulls the output below hlow. The objective

is to demonstrate that the estimates generated by the networks are (a) lower than the

target and (b) high values.

Table 3.1 shows the outcomes of the experiments performed in the Blocksworld do-

main. The weights used in the networks, α and β, were initialized to random values.

The number of nodes in the hidden layer is kept larger than the number of nodes input

53



layer of PE-ANN as prescribed in the neural networks literature. The size of this layer

was determined empirically. The learning rate Lrate is initially set high, so that it leads

to early convergence to a region close to the minimum. When gradient descent ap-

proaches the minimum the Lrate is reduced to enable it to converge using smaller steps.

The problem instances reported in Table 3.1, are taken from problems containing seven

or eight blocks. All the predictions for all the instances by both the networks are closer

to the target, and also the regularized network estimates are closer to target. One no-

table point that shows up in Table 3.1 is that two of our adapted heuristic functions e.g.

hcombo and hset−level make an appearance as the functions producing estimates closest

to ones generated by the networks.

Table 3.2 shows the results in the Elevator domain. In our experiments there was

a paucity of training examples, because Graphplan was unable to solve many bigger

problems that we generated. It may be observed that range of heuristic estimates gen-

erated by the nine functions is very high, and tending to be largely overestimates. In

this domain the performance of regularized network is better than the unregularized one

and at the same time the accuracy lies between 50 and 55. We get almost similar accu-

racy in the Blocksworld domain as well. Note that, by accuracy we mean the number

of instances for which the values of hpredicted were exceeding the targets, and become

admissible by employing the proposed approach. The approach has been validated over

900 to 1000 instances generated from different stages of solving planning problems in

each selected domain. Here the predictions are even more informed than the individ-

ual features used in the experiments performed in the earlier parts of POCL planning.

The accuracy decreases as the value of the parameter γ increases, and some uneven

behaviour is observed in the accuracy when γ ∈ [90, 100]. This uneven nature has not

yet been studied further.

Table 3.3 shows outcomes of the travel domain. We do not have enough training

samples for this domain as well. Here both the algorithms perform equally, though the

performance could have been better. This may be due to the small number of training

instances. The domain has high subgoal dependence as there is big difference between

htarget and hhigh. Predicting values lower than the hlow is not a desirable property. To

overcome the drawback of small number of training instances, we reduce the number

of features by removing highly correlated ones. In the end, 4 features (hmax, hadd,

hdjust−sum2 and hcombo) are selected (right part of Table 3.3). We keep the same number
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Ins hlow hhigh htarget htargetclosest

PE-ANN Using L2 norm PE-ANN Using L2 norm
hreg hclosest hval hreg hclosest hval hreg hclosest hval hreg hclosest hval

1 3 10 5 hmax 3.43 hmax 3 3.48 hmax 3 3.96 hmax 3 4.12 hmax 3
2 5 14 17 hcombo 3.46 - - 3.51 - - 19.87 hcombo 14 18.21 hcombo 14
3 4 12 6 hvhpop 3.45 - - 3.49 - - 4.02 hmax 4 4.36 hmax 4
4 3 10 5 hmax 3.44 hmax 3 3.48 hmax 3 3.96 hmax 3 4.13 hmax 3
5 4 12 12 hcombo 3.44 - - 3.49 - - 12.29 hcombo 12 11.81 hcombo 12

Table 3.3: This table shows the results in Travel domain. We divide this table into three
major parts. The second and third parts capture the predictions by the learned
models using all 9 features and the most uncorrelated 4 features, respectively.
Here, hreg shows the predicted values by the networks. In second part, the
parameters are |X| = 359, a = 1.0, b = 3.0, γ = 0.001, Lrates ∈ [0.6, 0) and 7
nodes in the hidden layer. While in the third part |X| = 359, a = 1.0, b = 3.0,
γ = 0.001, Lrates ∈ [0.6, 0) and 7 nodes in the hidden layer with 4 features.

of training instances with reduced number of features. Table 3.3 shows that the reduced

network has better performance in the travel domain. It can be observed (in the train-

ing data set) that only hmax has values below target. In four out of five instances the

network selects the correct options for the column hclosest (the closest heuristic). The

regularized network yields better predictions when it is a smaller network with only four

inputs, probably because the number of training instances are sufficient for the smaller

networks.

First, we observe that the heuristic hset−level(π), hpartition−2(π), hadjust−sum(π),

hadjust−sum2(π) and hcombo(π) that we have adapted and used. It can be seen in the

datasets that the extended heuristic functions perform well. By and large the value

given by these functions is closer to the target value than the existing functions, for

example as in Table 3.4 (however, the whole dataset cannot be shown) which is a part

of actual dataset created for the Blocksworld domain. Though in some domains they

underperform at few stages of planning process as compared to other state-of-the-art

heuristics of POCL planning.

Our second observation concerns the idea of combining these heuristic functions to-

gether, wherein both the overestimated as well as underestimated values of the heuris-

tic functions are combined in a certain domain specific ratio. In all our experiments

the heuristic values generated were high underestimating values, though there were in-

stances where the values were much lower than the optimal value, for example as in

Table 3.3. The poorer results in this table pertain to travel domain, where the number of

training instances we could generate was far fewer. We tried training a smaller neural

network here with only four inputs instead of nine, and as depicted in Table 3.3, the
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performance improved.

hmax hadd hradd hrelax hset hpart2 hadjsum hadjsum2 hcombo htarget

4 13 9 9 9 13 18 14 18 14
4 11 7 9 9 12 16 14 18 15
5 11 5 6 6 10 12 7 12 12

Table 3.4: A sample dataset in Blocksworld domain, The attributes are the heuris-
tic functions Max, Add, Positive Interaction, Relax, Set-level, Partition-2,
Adjust-sum, Adjust-sum2 and Combo defined in the last section along with
target value retrieved from Graphplan

3.2.5 Conclusions

Our main motivation of the approach in this section (Section 3.2) was that whether we

could learn domain independent way of combining heuristic functions by training over

examples from that domain. We have evaluated a combination heuristic by comparing

it with the constituent heuristic functions from literature, and also against the known

target value (optimal targets) for the training data. We have not tested this using a POCL

planner. Here, another motivations was to explore whether given a set of diverse input

heuristic values if we can learn combinations are underestimating the (assumed) optimal

cost. The learned models generated have been tested on about 1000 test instances in

each selected domain. We demonstrate the overall accuracy (the aggregate) of each

learned model which is more than 50% for each domain. It means using our adapted

cost function (using PE-ANN with L2 norm), at least half of the total samples used

for testing were forced to underestimate the actual targets in the testing phase. We

randomly choose only a few of the test points as we cannot show all of them.

However, for the statistical significance, comparison does not include the time needed

to generate the training samples or learning combinations of heuristic functions. For

getting a general idea of the complete approach, we demonstrate the overall accuracy

in each domain. A possible extension to this approach would be to compare a POCL

planner using the combination heuristics against other planners.

3.2.6 Summary and Future Work

This approach describes an attempt to learn ways to combine different heuristic values

to arrive at consistently better estimates over a range of planning domains and problems.
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The efficiency of a search algorithm is dependent upon the quality of the heuristic func-

tion that it employs.

Various planning algorithms using different domain independent heuristic functions

have been studied in the literature. Heuristics adapted from state-space planning ap-

proaches have been applied to partial order planning with considerable success. And

yet it is not always easy to design a good heuristic function that performs consistently

over different domains (Weld, 2011). We extend an approach of learning combinations

of heuristic functions (meta-heuristics) that are employed in plan space planning, us-

ing a set of existing POCL heuristics, and a set of some adapted heuristics derived by

exploration of the state-space.

One can see from Tables 3.1 to 3.3 that not only do different heuristic functions

perform better in different domains; even in a single domain different heuristic functions

perform better on different instances of problems. This is probably due to the fact that

planning by search is essentially a process of non-monotonic reasoning, in which the

reasoner asserts and retracts fluents describing the (current) state of the world. This is

something that a simple heuristic function is unable to make predictions about. Thus a

case for a non-linear function to combine the different estimates, for example as done

by a neural network, can be made.

We deploy a penalty enhanced artificial neural network that employs error func-

tions that penalize overestimates more than underestimates. We also explore a version

with regularization that is designed to work with smaller training sets. The inputs to

the networks are the values predicted by the available heuristic functions and the out-

put is a new, hopefully improved, estimate. The networks are trained separately for

each domain. The cost of achieving the goal is computed by running the algorithm

or the original planning problem but with the set of open goals treated as the goal to

be achieved. This value is fed back as the cost of resolving the open goals into the

backpropagation algorithm for training the network.

Once trained, the network is used to arrive at a heuristic value as a function of the

values predicted by the existing heuristic functions. Our experiments demonstrate that

this approach consistently arrives at estimates that are closer to but smaller than the

target value. The additional cost one has to pay is two fold. One, that a set of training

examples has to be solved for each domain to train the network. And two, that at
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each step, heuristic evaluation is done first by the different (input) functions and then

as an output of the neural network. However we feel that the benefits in search might

outweigh these costs. Our future work is to validate this thesis experimentally using a

partial order planner.

Another possibility is to reintroduce some aspects of partially instantiated operators,

to try and cut down on the space required to completely instantiate all operators. Recent

work (Ridder and Fox, 2014; Ridder, 2014) has shown that this can work, specially

when dealing with large problems, where the grounding phase itself takes up most of

the computation cycles.

In the next section, we introduce another approach for learning from existing heuris-

tics. We give an algorithm for dataset preparation and training regression models. These

models are employed as new heuristics to the search algorithms used in RegPOCL. The

intension of this approach is to speed up the planning process. As this is further ex-

tended using another approach of heuristic tuning in the next chapter, we do not provide

a complete evaluation in this section. However, we empirically demonstrate the utilities

of this approach, and we further discuss that why it should be extended by employing

the error tuning approach. This tuning approach has been discussed in Chapter 4.

3.3 Supervised Learning: Regression Methods

Like our previous approach where we focus on the admissibility of the learned meta-

heuristics. Here, in this approach we focus on providing some speed up to the POCL

framework using machine learning techniques. For speeding up the process, it is not

mandatory to have an admissible heuristic function. Therefore, in a similar way, one

could possibly use an approach of domain wise supervised learning to learn predic-

tive models (meta-heuristics) from existing heuristics. These learned models can be

deployed as new heuristic functions.

3.3.1 Learning Approaches Used

We propose a two fold approach to learn better heuristic functions. First, existing

heuristic function are combined by a process of offline learning that generates learned
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predictive models. This is followed by an online technique of adjusting the step-error

associated with these models during partial plan refinement. We divide this section into

two parts: first describes the offline learning techniques to perform regression, and then

a technique of further strengthening the informativeness of a learned predictive model.

Offline learning is an attractive approach because generating training sets in most

planning domains is a fast and simple process. The learning process has three phases:

(i) dataset preparation, (ii) training, and (iii) testing. The training instances gathered

by solving small problems become the inputs to the used regression techniques like

Linear Regression (LR) and M5P that are described later, which learn effective ways

of combining the existing heuristic functions. The testing phase is used to validate the

best ways of combining the known heuristics. Algorithm 1, a high-level code described

below is fully automated, embodies the complete training phase.

Dataset Preparation

The procedure DATASET-PREP() Line 15 in Algorithm 1 is used to solve a set (S) of

planning problems. We consider only small problems that are gathered from each plan-

ning domain selected from previous IPCs. We consider each problem from S for the

dataset preparation in each domain (line 18). In this algorithm, a seed partial plan is

a new partial plan that gets generated due to a possible refinement of the selected par-

tial plan. We select a seed sp from a set of seed partial plans Π (line 20). sp will be

provided to RegPOCL for its further refinements. If RegPOCL is able to generate at

least one consistent solution by refining sp completely using Solve() function (line 19),

then the flag F will be true. As shown in Figure 1, we capture the newly generated par-

tial plans in local instance of Π called Πloc. The target T captures the number of new

actions that get added in sp. T is calculated when the planner refines sp completely

using heuristics from H . Note that, T (the target) is not a heuristic value but actual the

number of new actions added during the refinement process using an hi (line 21). The

value of T is also the plan length found which might not be optimal. Since sp is refined

completely, Πloc is updated to Π (line 23). Line 22 computes a training instance Ins,

using Comp-inst() function. For a given sp, the planner generates a training instance

of the form t(sp) = 〈〈h1(sp), h2(sp), h3(sp), h4(sp), h5(sp), h6(sp)〉, T 〉, where h1

to h6 are the feature heuristics. As we explained in our first approach, these features
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Algorithm 1 : This algorithm is a domain independent procedure for generating meta-
heuristics, that learns domain specific meta-heuristics. The main procedure called
TRAINING-ALGORITHM() that calls another procedure DATASET-PREP(). This algo-
rithm first prepare training datasets and later it learns different predictive models. We
also call these domain specific learned models as meta-heuristics because they are de-
ployed as heuristics in the testing phase.

1: Input
2: AS - Attribute Selection; T - Training Datasets;
3: S - Problem Set; L - Learning Techniques;
4: H - Heuristic Set; RegPOCL - The Planner.

5: Output
6: Predictive Models, M; // functions of his from H

7: procedure TRAINING-ALGORITHM(AS, T , L)
8: for ind ← 2; ind ≤ |H| – 1; ind++ do
9: T [i]← DATASET-PREP(RegPOCL, S, H , ind ) // Sub-procedure call

10: end for
11: The best two T [i]s are selected on highest |T [i]|
12: TrainIns[i]← Apply(AS, T [i])
13: return M [k]← Apply(TrainIns[i], L[j])

// For each dataset & learning technique (2×5 = 10 per domain).
14: end procedure

There is another procedure called DATASET-PREP() that will be called by the
main procedure TRAINING-ALGORITHM(). For each selected planning domain,
DATASET-PREP() will be called four times. This creates four different training
datasets out of which two are selected on the basis of highest |T |.

15: procedure DATASET-PREP(RegPOCL, S, H , ind )
16: F - Check; T - Target Value; T ← φ.
17: Π - A set of seed partial plans; hi← H[ind ].
18: for each p ∈ S do
19: Π← Null partial plan for the problem “p”
20: for a random sp ∈ Π do // Limited iterations
21: (F , T , Πloc)← Solve(RegPOCL, sp, hi)
22: if F then // sp refines completely
23: Π← Π ∪ Πloc

24: Ins← Comp-inst(RegPOCL, H , sp, T )
25: T ← T ∪ Ins
26: end if
27: end for
28: end for
29: return T
30: end procedure
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considered here for learning are also the existing heuristics from the POCL literature.

To maintain consistency, we update the training set T (line 25) only when RegPOCL

refines the current seed sp completely. If its complete refinement is not possible, all

new seeds from Πloc are dropped, even though it might be the case that Πloc contains

some consistent seeds that can be completely refined, particularly in the case of time

out. To maintain diversity in T , for a given domain we randomly select a fixed number

of seeds for the complete refinement process (line 20).

Algorithm 1, a domain independent approach, gets executed once for each selected

domain with a given set of feature heuristics. Note that learning does not guarantee

optimal predictive models even though optimal targets have been used in the train-

ing (Virseda et al., 2013). Algorithm 1 hunts for a well informed heuristic using learn-

ing and does not bother about its admissibility. Since the state-of-the-art POCL heuris-

tics are not optimal in nature (Younes and Simmons, 2003), the usage of RegPOCL for

generating training instances should not affect the performance of RegPOCL on large

problems in the testing phase. The selection of RegPOCL for generating training sets

might deteriorate the actual target values, as the targets calculated by RegPOCL are not

optimal in general. Thus there is a possibility of learning inaccurate predictive models in

the training phase, which might reduce the informativeness of the models. To alleviate

this, we enhance the informativeness of the models by correcting the step-error associ-

ated with them using an online heuristic tuning approach. We describe this approach of

finding single-step-error in the next chapter. In the next chapter, we also demonstrate

the results of of our current approach (the second offline learning approach). We also

show that how single-step-error alleviate the performance of a POCL planner further.

Training

Once Algorithm 1 finishes generating different datasets for a given domain, it moves to

the next step (line 11). We define a regression model R : T→ R, where T is a training

set and R is a set of real numbers. Following the general model training strategy, we

use WEKA (Hall et al., 2009) to remove irrelevant or redundant attributes (line 12)

from the training set. This reduces the effort of the planner because the planner must

calculate the selected feature heuristics at each step of the planning process. The output

of Algorithm 1 is a set of different trained predictive model (as shown in line 6). Next,
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we apply model training process (line 13). We feed the selected datasets to different

machine learning approaches to learn different predictive models.

Testing

We test the predictive models on large problems. The models are directly compared

to the current best heuristics in the POCL framework. For using machine learning

approaches in planning efficiently, we select the best learned regression models and test

the efficiency of RegPOCL by using them over different benchmarks. These models

help in selecting the most suitable partial plan for refinement.

Offline learning learns a better model in terms of search guidance and accuracy than

online learning (Samadi et al., 2008; Thayer et al., 2011). An offline learned predictor

is more accurate than an online one because in the offline case a complete training

set is available. Another alternative to the above approaches would be bootstrapping

methods (Arfaee et al., 2011), where a set of problems is solved using a base heuristic

within a specified time limit. Later, the solutions obtained for learning are used to

generate a new more informed heuristic.

3.3.2 Experiment Design

In this section we describe the evaluation phase settings. This includes (i) the heuristics

selected as features, and (ii) the domains selected. The features used for learning are

non-temporal heuristics from the literature of POCL planning. Considering the appli-

cability of some of the POCL heuristics in the literature (Younes and Simmons, 2003;

Nguyen and Kambhampati, 2001), we select six different heuristic functions. Some of

these heuristics are informed but their informativeness varies over different planning

domains. Our aim is to learn a more informed combinations from these heuristics.

We now discuss six feature heuristics out of which we have already discussed a few.

G Value (hg-val)

This returns the number of actions in a selected partial plan π not counting the two

dummy actions (a0 and a∞). This heuristic signifies how far the search has progressed
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from the starting state. During the planning process, alone this heuristic function is not

much effective and it hardly solve some problems. We do not cover any experimental

details specially for this heuristic.

Number of Open Conditions (hOC)

This is total number of unsupported causal links present in a partial plan, hOC(π) =

|OC| (Nguyen and Kambhampati, 2001). During the planning process, like first, alone

this heuristic function is also not much effective and it hardly solve some problems. We

do not cover any experimental details specially for this heuristic. For further details

refer to the section 2.3.1. There we also talk about how we can use each open condition

effectively using serial planning graph.

Additive Heuristic (hadd)

The additive heuristic hadd (Haslum and Geffner, 2000), adds up the steps required

by each individual open goal. Younes and Simmons (2003) use an adapted version of

additive heuristic in POCL planning for the first time. We have described this heuristic

function in detail, refer to 2.3.2

Additive Heuristic with Effort (hadd,w)

The estimate is similar to hadd but it considers the cost of an action as the number of

preconditions of that action, plus the linking cost 1 if the action supports any unsup-

ported causal link (Younes and Simmons, 2003). We call it hadd,w as its notation is not

used earlier. Here, w signifies the extra work required.

Accounting for Positive Interaction (hradd)

This returns an estimate which takes into account the positive interactions between sub-

goals while ignoring the negative interactions. This is represented as hradd that is a vari-

ant of hadd (Younes and Simmons, 2003). For further details refer to the section 2.3.3.
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Accounting for Positive Interaction with Effort (hradd,w)

This is similar to the above heuristic which considers the total effort required (Younes

and Simmons, 2003). A standard notation of this heuristic is also not used in the litera-

ture. For further details refer to (Younes and Simmons, 2003).

3.3.3 Domains Selected

We consider the following domains: Logistics and Gripper from IPC 1, Logistics and

Elevator from IPC 2, Rovers and Zenotravel from IPC 3, and Rovers from IPC 5. One

of the reasons of selecting these domains is, in our experiments, we do not consider

other domains from these competitions because either the state-of-the-art heuristics are

not able to create enough training instances for learning, or RegPOCL does not support

the domain definition language features. IPC 4 domains are not selected since the plan-

ner is not able to generate enough instances to initiate offline learning. The domains

from IPC 6 and later are not supported by RegPOCL because the representations use

action costs, fluents, and hard and soft constraints. Some of them can be included by

preprocessing like removal of the cost of the actions from the domain description files.

For each selected domain, we consider problems that are represented in STRIPS

style. We select small sized problems for learning and test the learned predictive models

over large sized problems in the same domain. We have a total of 109 small sized

problems from the selected domains. The last four feature heuristics from the previous

subsection have been used for calculating targets in each domain. This means that

we generate four different datasets in each selected domain from which best two are

selected. We choose satisficing track problems for generating training instances. For

the training set preparation, we fix a time limit of 3 minutes and an upper limit of

500,000 on the node generation. We generate a few thousand training instances except

for the Zenotravel domain where the total instances are 950.

3.3.4 Selected Regression Approaches

In this section, we discuss in brief a procedure for feature selection in each dataset for

training regression models, and different regression techniques with their references.
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Feature Selection

In general, the training sets contain irrelevant or redundant attributes (out of the six

selected heuristics). To reduce the training effort and increase the efficiency of our

planner, we discard them from the training set. The planner is bound to calculate all the

selected features at each stage of refinement. The correlation based feature selection

technique (Hall, 2000) is used to find the correlated features.

Regression Techniques

We use the following regression techniques to learn predictive models. These tech-

niques have been applied in planning for learning in recent years (Samadi et al., 2008;

Thayer et al., 2011; Virseda et al., 2013).

1. Linear Regression (LR): The regression model learns a linear function that min-
imizes the sum of squared error over the training instances (Bishop, 2006).

2. M5P: M5P gives more flexibility than LR due to its nature of capturing non linear
relationships. M5P technique learns a regression tree (Quinlan et al., 1992) that
approximates the class value.

3. M5Rules: Similar to M5P but generates rules instead of modeling regression
trees (Quinlan et al., 1992). It generates a decision list for regression problems
using separate-and-conquer. In each iteration it builds a model tree using M5 and
makes the "best" leaf into a rule.

4. Least Median Squared (LMS): LMS is similar to LR with median squared error.
Functions are generated from subsamples of data with least squared error func-
tion. Usually a model with lowest median squared error is selected (Rousseeuw
and Leroy, 2005).

5. Multilayer Perceptron (MLP): MLP can learn more complex relationships com-
pared to the other four regression techniques (Bishop, 2006). The key difference
in this kind of network from the previously employed networks in our first ap-
proach is, we use the regular error function (E(t) = φ(t) − Y (t)). Also, our
aim here is to combine multiple heuristics effectively instead of forcing the com-
binations to be admissible. As we said earlier too, learning does not guarantee
admissibility, but most often we demonstrate it in the experiments.

In this work, the techniques discussed above are used to learn models through

WEKA (Hall et al., 2009) using a 10-fold cross-validation in each domain. However, it

has not much influenced planning processes in the past (Virseda et al., 2013).
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As we said earlier, Algorithm 1 is completely automated for the training phase,

where it learns domain wise suitable regression models using the above discussed re-

gression approaches. In automated planning, we do not have any standard dataset for

any planning domains. Therefore, to apply machine learning approaches, we need to

create our own datasets according to our need. So, the general purpose algorithm says

thatover we consider small problems in each domain to create training instances, later

we apply regression techniques on those training sets. This resulting in regression mod-

els, that are deployed as new heuristics in the search algorithms used in RegPOCL.

3.3.5 Environment

We perform the experiments on Intel Core 2 Quad with 2.83 GHz 64-bit processor and

4GB of RAM. To evaluate the effectiveness of learned models and to correct the single-

step-error associated with the models, a time limit of 15 minutes and a node generation

limit of 1 million is used.

3.3.6 Experiments

We use RegPOCL to compare the performances of the offline predictive models hl, and

the last four base features that are also the state-of-the-art non temporal heuristics). We

exclude the first two base features from the comparison since they are weak ones, and

RegPOCL does not solve enough number of problems using them. However, they are

useful while working jointly with other good heuristics as we demonstrate later in this

section. Next, we discuss the observations made during the training phase.

Training

Using Algorithm 1, we prepare datasets and learn different predictive models by apply-

ing the various regression techniques discussed earlier. We select each of the last four

features to solve a set of problems. The target value is the plan length found by Reg-

POCL using the base features. The dataset preparation phase took less than two hours

on an average in each domain, for each of the four features. Once we have enough

instances, we begin the training process. We define a regression model R : T → R,
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Domain #
POCL Heuristics

State-of-the-art Via Learning
hadd hadd,w hradd hradd,w hladd hladd,w

Gripper-1 20 16 20 1 1 20 20
Rovers-3 20 19 19 20 20 20 20
Rovers-5 40 28 31 32 36 39 +36

hadd hadd,w hradd hradd,w hr,ladd hr,ladd,w
Logistics-1 35 25 1 32 28 32 22
Elevator-2 150 148 14 150 58 150 150
Logistics-2 40 36 12 36 34 40 40
Zenotravel-3 20 5 4 9 10 16 16
Coverage 325 277 101 278 187 317 +304

Table 3.5: Number of problems solved using each feature heuristic, and is compared
with the learned combination heuristics via supervised leaning. # is the num-
ber of problems selected in each domain. Best results are shown in bold, and
a number with “+” mark (e.g.+36) shows competitive performance by the
learned models and their enhancements over each base heuristic. We give
the total coverage score in the last row of each table for making the overall
comparison easier. For a note, the numerical values with the domain names
in the table depict the IPC. Similar column representations have been fol-
lowed in the next other .

where T is a training set and R is a set of real numbers. Note that, in Figure 4.1, dif-

ferent heuristics for calculating target values will prefer different paths. Therefore, the

four base features will generate four different datasets. The attribute selection strategy

allows us to select a subset of attributes in the training set by removing correlated and

redundant features. We learn a total of 70 (7 domains × 2 datasets × 5 regression

techniques) regression models. The training phase took 20ms (milliseconds) using LR,

270ms using LMS, 600ms using MLP, 82ms using M5Rule, and 58ms using M5P on

an average per model. All the learned models have high accuracy but LR is the fastest,

followed by M5P and M5Rule. For a note - these training times are not used for the

comparison. We consider learned models as new heuristics, and in the testing phase

they are employed as new heuristics like a base heuristic, in other words, like other

heuristics for them the time factor starts from zero too. Next, we test these models on

different benchmarks.

Testing

We test the effectiveness of our approaches by selecting partial plans (π) for refine-

ment using RegPOCL. We assume that an informed heuristic leads to minimal possible

refinements needed for π. Next, for comparison we compute score as in IPC for sat-

67



isficing track problems. The standard followed by the community for scoring is given

below. The formula describes to generate score (0 ≤ scorep ≤ 1) for each problem

in a given planning domain. For the exact details on how these scores are computed,

readers are referred to https://helios.hud.ac.uk/scommv/IPC-14/.

scorep =

bestval
/
valapp : if a solution is found

0 : otherwise

These scores will be unit-less, and the better score on each standard benchmark signi-

fies the better performance. We compare the performance of the learned models with

the selected base features hadd, hadd,w, hradd, and hradd,w. The comparison is done on the

basis of (i.) the number of solved problems, and (ii.) the score obtained on plan quality,

and execution time.

Before we move to evaluation part, for example, the offline learned model hr,ladd

used as a column in Table 3.5 and Table 3.6, shows that it is learned on a dataset that

is prepared using hradd. In other words, RegPOCL uses hradd for calculating the target

values in the dataset. It is also similar for other offline learned heuristics in these tables.

These models are applied in the POCL framework for selecting the most suitable partial

plan, followed by the heuristic MW-Loc (Younes and Simmons, 2003) for selecting the

most adverse flaw in the selected partial plan.

Empirical Evaluation

In Table 3.5, we show the coverage on the total number of problems solved. Including

all the domain, we consider a total 325 problems. This table demonstrates that using

the supervised learning approach, RegPOCL is able to solve at least 39 more problems

when the learned predictive models have been employed. This also shows the effective-

ness of the combined heuristic functions, in which the weights given to each heuristic

should be dependent on the utility of that heuristic in a given domain.

Based on the coverage shown in Table 3.5, the following inferences are made. In

Elevator-2, hadd and hradd are among the good performers from the base heuristics, per-

haps learned heuristics solved all the problems. We could see that hadd,w, and hradd,w

have not performed well. It happened because in this domain, an action resolver can
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Domain
POCL Heuristics

State-of-the-art Via Learning
hadd hadd,w hradd hradd,w hladd hladd,w

Gripper-1 16.0 14.9 0.7 0.7 20.0 20.0
Rovers-3 17.3 16.2 18.1 16.9 17.8 17.8
Rovers-5 25.7 26.3 28.0 30.2 33.1 30.1

hadd hadd,w hradd hradd,w hr,ladd hr,ladd,w
Logistics-1 24.3 0.8 31.2 26.1 +31.2 20.9
Elevator-2 142.8 11.8 144.9 49.7 142.7 142.7
Logistics-2 33.8 10.7 34.9 30.7 38.1 38.1
Zenotravel-3 4.6 3.7 8.5 8.8 13.5 13.5
Quality Score 264.5 84.4 266.3 163.1 296.4 +283.1
Time Score 204.4 76.5 197.7 148.6 272.9 +258.6

Table 3.6: Scores on plan quality and overall time. We compare state-of-the-art POCL
heuristics with learned ones. The second last row sums up the total quality
score and the last row demonstrates the overall time score of each heuristic.
Our approaches have performed well.

resolve multiple unsupported causal links at one time. Therefore, in these heuristics,

the extra effort considered for each unsupported causal link predicts larger values than

the real estimates. A similar trend can also be seen for Logistics-1 and Logistics-2

domains. But in Logistics-2, once we allow action reuse in the heuristic (hradd,w), the

performance improves as it improves the heuristic’s accuracy, and it could solve 34

problems out of 40. However, when the action reuse was not allowed during evaluating

a partial plan, it was able to solve only 12 problems in the given time. Once learning

is applied, the selected predictive models get higher weighted coefficients for hadd and

hradd. The supervised approach suggested the best learned heuristic for RegPOCL, and

hence in Logistics-2 domain it solved all 40 problems. In Zenotravel-3, the base heuris-

tics perform better if action reuse is applied, shows that actions in this domain are not

tightly coupled. These heuristics also get higher weights in the best learned models as

expected from a supervised approach, resulting in solving up to 16 problems, where the

best base heuristic could solve only 10 problems. In Logistics-1, hr,ladd solved 39 out of

40 problems, but hr,ladd,w could only solve 22. Sometimes it affect the performance of

the planner using an over generalized learned model on bigger problems, which hap-

pened in this domain. We further enhance the informativeness of these kind of over

generalized models in the next chapter.

In Table 3.6, we show the scores obtained on the plan quality and overall time

required. The coverage shown in the previous table directly affects the scores in this

69



table. The scores obtained using the learned heuristics is quite good as compared to

when the base features have been used. The new scores are far ahead as compared to

the old scores. The trend we saw in the previous table, we can see almost a similar

trend in this table too. As we can infer in Zenotravel-3, even though the learned models

have solved 16 problems but they are not the best for those problems that are solved

using all the heuristics. This is because the two base heuristics hradd and hradd,w were the

best for relatively smaller sized problems. Using hradd, RegPOCL solved 9 problems

and obtained the plan quality score 8.5. This justifies that the plans obtained for these

9 problems were among the best plans. We also infer that for these problems, the two

learned heuristics hr,ladd and hr,ladd,w can obtain scores maximum up to 7.5. Therefore,

learning techniques are good for bigger sized problems in this domain. A similar trend

can also be seen in Elevator-2 domain. It is inferred that if using a base heuristic solves

a problem, it is highly probable that a shorter plan will be found. Which is justified by

the scores obtained by hradd (144.9), and the two learned models (142.7) in Elevator-2

domain. Rovers-5 domain also shows a similar trend if we do not consider the extra 3

problems solved using hladd. The winners for both on the plan quality score and total

time score are the learned models, hladd and hr,ladd. A few other inferences can be made

further which are quite straight forward to visualize. We mention some of them in the

next chapter.

We discussed the problem of over generalized learned predictive models like the

cases in Logistics-1 and Rovers-5 domain. We work for enhancing the informativeness

of such models in the next chapter. In this direction, we base our approach upon Tempo-

ral Difference learning. From Table 3.5 and Table 3.6, we at least assess that the offline

learned predictive models are doing well in the planning process. In the next chapter, in

the testing phase of the experiment section (4.4), for an easier overall comparison, we

consider these demonstrated results again.

Statistical Significance

Similar to the previous supervised learning approach, it is important to mention the

following things for a clear differentiation between the approaches employed in this

section and the approaches they have been compared with. When we use scores to

compare, specially, on the standard benchmark of the total time taken, it is important to
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mention a couple of points. In our cases, an ML approach is performed in three phases:

(a) dataset preparation, (b) training different models and their comparison for picking

the best ones from them, and (c) testing. Each phase is independent and performed in a

sequence, therefore each phase has their own time of completion. For the comparison

of the learned predictive models with the feature heuristics, the time taken in the dataset

preparation and training phases is not considered. This also means once a combination

of heuristics is learnt, it is used like a regular base heuristic. An ML approach also

involves in cherry-picking of domain wise best heuristics, however base heuristics do

not have this flexibility.

3.3.7 Discussion

The literature of learning for planning empirically shows that sometimes the offline

learned models generalize the learned knowledge. Therefore, due to too much gener-

alization, they are not effective on large sized problems. The reason is that planning

problems often carry different natures even though they belong to the same domain.

To overcome such effects of offline learned approaches, we introduce a online heuris-

tic tuning approach in the next chapter. We give a general formula for tuning a given

heuristic on the fly when RegPOCL solves a problem. This is based on TD learning

proposed by Richard S Sutton (1988). The heuristic tuning approach captures the error

associated with the given heuristic, and corrects that error for the subsequent stages of

search. This makes the heuristic fine tuned for that particular problem. The approach is

problem independent but it learns instance specific details, so that the informativeness

of the heuristic can be enhanced for a given problem with the progress of search.

At this stage in this chapter, we do not demonstrate the complete empirical results of

offline learning that is covered in this particular section. However, we have shown the

utilities of the learned predictive models on a couple of important planning benchmarks,

in the domains selected. As we deploy the general purpose online heuristic tuning

approach to these learned models, it would be more meaningful if we compare all the

empirical results together, after describing the heuristic error tuning approach.

Note that for this approach in this section, we have discussed the domains selected,

the feature heuristics, and the regression approaches employed to learn the offline pre-
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dictive models, and some basic results. In the next chapter, for the evaluations, we will

start with comparisons between the base features (the feature heuristics), offline learned

predictive models and their further enhanced version obtained using the online heuristic

tuning approach.
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Chapter 4

ONLINE HEURISTIC TUNING USING TEMPORAL

DIFFERENCE LEARNING

Learning new heuristic functions (meta-heuristics) from existing heuristic has been

a matter of investigation in last ten years. Apart from the supervised approaches, a

promising approach is to monitor and reduce the error associated with a given heuristic

function on the fly even as the planner solves a problem. In this part of the thesis, we

extend an approach for calculating single-step-error associated with a heuristic function

in the POCL framework.

4.1 Introduction and Motivation

The performance of a domain independent planner is critically influenced by the design

of the heuristic function. The study of heuristics in classical state-space planning has

received significant interest in the past. There are many good heuristic evaluation func-

tions with varying performances on different domains. Our approach is to examine the

single-step-error associated with the different heuristic functions during search. The

single-step-error also varies for individual domains or even for individual problems.

The last decade has also seen a revival in use of heuristics derived from state-space ap-

proaches (Nguyen and Kambhampati, 2001; Bercher et al., 2013; Bercher and Biundo,

2013) to POCL planning (McAllester and Rosenblitt, 1991; Penberthy and Weld, 1992).

We consider the importance of heuristic search in POCL planning and the tendency

of often overestimating the actual cost by the state-of-the-art POCL heuristics. To over-

come this tendency, we adapt and modify a procedure for monitoring single-step-error

associated with some state-of-the-art heuristic functions based on Temporal Difference

learning also called as TD learning (Sutton, 1988; Thayer et al., 2011). As we saw in

Example 1 from Chapter 2, the POCL framework has the advantage of greater flex-

ibility during the planning execution process (Muise et al., 2011). A partial plan is



quite complex structurally and therefore developing a well informed heuristic function

is comparatively a more tedious task (McAllester and Rosenblitt, 1991; Weld, 2011). In

this work, our focus is to investigate the use of the average-step-error associated with

some powerful state-of-the-art POCL heuristic functions during search. The basic idea

behind this monitoring approach is to avoid a heuristic function taking a similar view

of the problems in different domains by measuring and trying to correct the error in the

heuristic value on-the-fly.

We discuss the pros and cons of capturing the single-step-error on-the-fly during

search, and empirically show that the performance of a planner like Versatile Heuristic

Partial Order Planner (VHPOP) (Younes and Simmons, 2003) can be enhanced. We

perform experiments over various domains with different degree and nature of interac-

tions between the subgoals and actions. Experiments show that this approach results in

more informed decision in different planning domains during search, even being com-

petitive on the time required as well. In some domains we find shorter length plans,

good scores on time, and number of nodes visited by the planner, specially for large

planning instances.

4.2 Enhancing The Informativeness of a Heuristic

Thayer, Dionne, and Ruml (2011) adapt the idea of TD learning (Sutton, 1988) in state-

space planning for capturing the error committed by a given heuristic (Thayer et al.,

2011). They use this approach for generating targets on the fly to perform online learn-

ing. In the POCL framework, we also adapt the TD learning approach for estimating

error made by a POCL heuristic during refinement of a partial plan. The original deriva-

tions for capturing the step-error and average-step-error are credited to Thayer, Dionne,

and Ruml (2011) (Thayer et al., 2011).

In the POCL framework (Figure 4.1), the minimum number of total refinements

needed for a partial plan πi to make it a solution plan, goes through its best child

πi+1 that is obtained after refinement Ri. A child πi+1 is the best child when it has

the lowest prediction of the number of new actions needed for its complete refine-

ment among its siblings. We break ties in favor of minimum number of actions in

the children partial plans. The set of successors of a partial plan is potentially infi-
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nite. This is due to the introduction of loops in the plan which simply achieve and

destroy subgoals like 〈(Stack A B), (Unstack A B)〉 or 〈(Pickup A), (Putdown A)〉,
in Blocksworld domain. Such loops are common during the refinement process, spe-

cially when the heuristic is not well informed. The enhancement explicitly avoids

generating such loops which is crucial in real world scenarios. For example, a pair

〈(LoadTruck obj truck loc), (UnloadTruck obj truck loc)〉, in Driverlog domain

could be expensive. In general in plan space planning there is no backtracking (Ghallab

et al., 2004), leads you to a space containing infinite nodes. Which means, each refine-

ment of a partial plan leads to a different node in the plan space. This necessitates that

we explicitly consider the issue of getting into a loop.

Figure 4.1: A POCL framework - The refinement (R) starts from π0 and it goes to
the solution plan (πsol). At each step, for a selected partial plan, many
refinements are possible like refinements of π0 which lead to π1, π′1, and π′′1 .
Here, the best child is shown in the horizontal refinements.

Following the TD learning approach, for capturing the single-step-error, we define

the minimum number of refinements needed for a partial plan (πi) as the sum of the

cost of its current best possible refined partial plan (πi+1) and the refinement Ri,

h∗(πi) = cost(Ri) + h∗(πi+1)

The runtime estimation of h∗(πi) is a tedious task, also not feasible sometimes, and

therefore we approximate it as,

h(πi) ≈ cost(Ri) + h(πi+1)

Suppose a partial plan π0 requires minimum k refinements (only resolution of unsup-
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ported causal links) as shown in Figure 4.1. In this figure, each refinement Ri to πi+1

in the series is the best possible refinement (locally i.e. πi+1 is best child among its

siblings for the parent πi). This estimation of the best candidate is based on the heuris-

tic values. The smaller heuristic estimate for a candidate partial plan suggests that it

requires lesser number of total possible refinements for the partial plan to be a solution

plan. Before resolving an unsupported causal link we make sure that there is no threat

in πi. In Figure 4.1, πsol shows a solution plan (a partial plan with no flaws).

We give a definition (Definition 4.2.1) below which captures the total error com-

mitted by a heuristic function (h). The new heuristic estimation, he: expected to be a

stronger version of h, in the definition is supposed to have more realistic estimate as

compared to h. Our adaptation captures more essential details about the single-step-

error correcting approach in the POCL framework. Some specific issues arise in the

POCL framework which makes this approach tedious to be employed in this frame-

work like handling of achieving and deleting of an open condition, as explained in the

beginning of this section. Such issues are not associated with state-space approaches,

makes the planing process easier for the state-space planners. In this approach, we

directly adapt TD learning from the reinforcement learning literature. However, the

adaptation may show some side effects during the heuristic estimation, but such side

effects which can affect the performance negatively have not been observed during the

experimentations. In the discussion section of this chapter, we clearly mention the pos-

sibilities when this way of enhancing the power of a heuristic function can adversely

affect the overall performance of a POCL planner. Next, we give a definition, a formula

which is used for calculating the overall error associated with a heuristic function. We

discuss about this by keeping Figure 4.1 in mind.

Definition 4.2.1. For a given heuristic function (h) and partial plan (πi) which leads

to the solution plan (πsol) after certain refinement steps, the enhanced version of the

heuristic (he) is computed as,

he(πi) = h(πi) +
∑

π′ from πi πsol

εh(π′) (4.1)

where πi πsol is a path that considers refining each partial plan (π′) generated along

the path between πi and πsol. The path includes πi and excludes πsol. The term εh is

single-step-error associated with h during refinement.
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Now, using the Principle of Mathematical Induction, we show how effectively the

total single-step-error associated with a given heuristic function h, is captured. This

also justifies why this update rule should be used.

Basis: We assume that πi needs only one refinement to become πsol that would also be

πi’s best child. Here, the best child always keeps the lowest estimate of requirement

of new actions for its refinement among its siblings. One possible refinement of πi is,

πi
Ri−→ πsol. Using Eq. 4.1, we say,

he(πi) = h(πi) + εh(πi) (4.2)

The term εh(πi) is the single-step-error associated with h that estimates the total effort

required for πi to refine it completely. For unit cost refinements (cost(Ri) = 1), εh(πi) is

computed as,

εh(πi) = (cost(Ri) + h(πi+1))− h(πi) (4.3)

Here, the partial plan πi+1 is also the πsol, therefore h(πi+1) = 0. By using Eq. (4.2) and

Eq. (4.3) together, we get he(πi) = 1. Therefore, the base step holds.

We assume that after refinement step Ri, to be the best child, there is no unsup-

ported causal link present in πi+1 and a threat (if any) will be resolved by the planner

immediately to make it a solution plan. If there is an unsupported causal link then there

must be an existing action in πi+1 to support it. Here the estimate for new resolvers is

still be 0.

Inductive step: We select an arbitrary πi+1 and assume that Eq. (4.1) holds for it, and

we show that Eq. (4.1) holds for πi too.

he(πi) = cost(Ri) + he(πi+1)

= cost(Ri) + h(πi+1) +
∑

π′ from πi+1 πsol

εh(π′)

...by the induction hypothesis.

= h(πi) + εh(πi) +
∑

π′ from πi+1 πsol

εh(π′) by Eq. (4.3).

= h(πi) +
∑

π′ from πi πsol

εh(π′)
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Therefore, the the relationship holds for the parent partial plan πi as well. Thus, by

induction for all partial plans π, our assumption is correct.

A General Formula for Heuristic Enhancement

In Definition 4.2.1, he(πi) is an online approximated version of h(πi). This approxima-

tion uses the parent and the best child relationships to measure the step-error of each

refinement in the path and correct it for the evaluations of further refinements.

Using Definition 4.2.1 and Figure 4.1, we calculate the average-step-error associated

with h, denoted by εavgh , along the path from πi to πsol as,

εavgh =
∑

π′ from πi πsol

εh(π′)

/
he(πi) (4.4)

Rewriting Eq. (4.4), ∑
π′ from πi πsol

εh(π′) = εavgh × he(πi) (4.5)

Using Eq. (4.5), Eq. (4.1) simplifies to,

he(πi) = h(πi) + εavgh × he(πi) (4.6)

Further simplification of Eq. (4.6) yields,

he(πi) = h(πi)
/

(1− εavgh ) (4.7)

Another possible expansion, using infinite geometric progression, of Eq. 4.7 would be,

he(πi) = h(πi)× (1− εavgh )−1 (4.8)

Therefore,

he(πi) = h(πi)×
∞∑
i=0

(εavgh )i : if |εavgh | < 1 (4.9)

We use RegPOCL to test the effectiveness of he(πi) in the POCL framework, where
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it selects the best partial plan. Here, Eq. 4.8 shows a general formula which can be

used for an enhancement in the informativeness of a heuristic function. In this chapter,

we demonstrate the results obtained by using this equation for enhancing hadd and hradd

heuristics, as they are the state-of-the-art non temporal POCL heuristics and improve-

ments over these heuristics are sought. We also employ this approach to enhance the

informativeness of the offline learned predictive models, discussed in the last section

of the previous chapter. First, we see the performance of online tuning approach on

general POCL heuristics.

4.3 Online Tuning of Non-Temporal POCL Heuristics

First, we discuss the additive heuristic (hadd) and its adaptation to the POCL framework.

4.3.1 headd(π) : Improved Additive Heuristic

We have discussed hadd in Section 2.3.2. On the lines of previous discussion, the ad-

ditive heuristic (Bonet et al., 1997) adds up the steps required by each individual open

goal. The assumption of subgoal independence that it makes has worked well in many

domains. However in many other domains it has a tendency to overestimate the cost.

The heuristic value is estimated recursively using the recursive relation given below.

Suppose p is a proposition and A(p) is a set of grounded actions that produce p. Then,

hadd(p) =


0 If p unifies with an atom in I;

mina∈A(p)hadd(a) If A(p) 6= φ;

∞ Otherwise.

The cost of an action is calculated by the formula given below,

hadd(a) = 1 + hadd(precond(a))

The hadd(π) for POP which is given by Younes and Simmons (2003) is defined as:

hadd(π) =
∑

p−→aj∈OC(π)

hadd(p)
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an action ap produces a proposition p and conditioned by r, so hadd(r) will be added to

the cost of ap.

The additive heuristic often overestimates the actual distance-to-go due to the na-

ture of its design. hadd often commits significant error in the actual estimation at each

refinement stage in the POCL framework. Using the online heuristic tuning approach,

we further enhance the additive heuristic. We apply hadd in Eq. 4.9, therefore the new

estimate generated is represented as headd. The improved additive heuristic based on is,

headd(πi) =
hadd(πi)

1− εavghadd

(4.10)

This is an inadmissible heuristic like hadd, but it is more informed as compared to h,

where εavghadd
(given below in Eq. 4.12) is the average-step-error associated with hadd. In

a similar way, we capture the single-step-error associated with the hadd as,

εhadd(πi) = (cost(Ri) + hadd(πi+1)) − hadd(πi)

where εhadd(πi) is either positive or negative since hadd is an inadmissible heuristic. We

approximate the total effort required to refine πi as,

headd(πi) = hadd(πi) +
∑
π∗ from
πi πsol

εhadd(π∗) (4.11)

where εavghadd
is an estimate of average-step-error committed by hadd, that is defined as,

εavghadd
=

∑
π∗ from
πi πsol

εhadd(π∗)

/
headd(πi) (4.12)

In this derivation, we skip some of the important intermediate steps and they have al-

ready been shown in the general formula in detail. We refer readers to the previous

section in this chapter for a detailed understanding of the formulas derived in Eq. 4.8.

Simplification by using Eq. 4.11 in Eq. 4.12, we get an inadmissible but improved es-

timate for a given heuristic function (e.g. additive heuristic in this case) for POCL

planning,

headd(πi) = hadd(πi) + εavghadd
× headd(πi)
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headd(πi) =
hadd(πi)

1− εavghadd

(after simplification)

= hadd(πi) ×
∞∑
i=0

(
εavghadd

)i
We use headd as an improved alternative in place of hadd.

4.3.2 hr,eadd : Improved Positive Interaction Heuristic

On the lines of the discussion in Section 2.3.3, we begin with a brief discussion of

accounting for positive interaction heuristic which is represented as hradd Younes and

Simmons (2003). Younes and Simmons (2003) address the positive interactions among

subgoals while ignoring the negative interactions. This estimation technique is used (as

a variant of hadd (Haslum and Geffner, 2000)) for ranking the partial plans for the first

time by Younes and Simmons (2003), which is,

hradd(π) =
∑

p−→aj∈OC(π)



0 ∃ak ∈ A such that an

effect of ak, unifies with

p and aj ≺ ak /∈ O;

hadd(p) Otherwise.

(4.13)

In Eq. 4.13, hradd(π) is the substitute for hadd(π) as the latter has no provision for actions

reuse. The underlying principle of POCL planning is that the resolver already present

in the partial plan will used, if it is consistent.

We consider single-step-error associated with accounting for positive interaction

heuristic because it is one of the poor performers in gripper domain (Younes and Sim-

mons, 2003). The direct expression, similar to the definition of headd (Eq. 4.10), is,

hr,eadd(πi) = cost(Ri) + hr,eadd(πi+1)

We use hr,eadd as the other improved inadmissible heuristic function close to h∗, that is,

hr,eadd(πi) =
hradd(πi)

1− εavghradd

(4.14)

where the term εavghradd
(similar to εavghadd

as in Eq. 4.12) is the average single-step-error
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Figure 4.2: Performance of wA∗ algorithm in gripper domain from IPC-1. The graph
shows the behavior of headd across different weights. MW-Loc is used as the
flaw selection heuristic.
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Figure 4.3: Performance of wA∗ algorithm in logistics domain from IPC-2. The figure
4.3a shows the behavior of headd and the figure 4.3b shows the behavior of
hr,eadd. MC-Loc is used as flaw selection heuristic.
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Figure 4.4: Performance of wA∗ algorithm in driverlog domain from IPC-3. The figure
4.4a shows the behavior of headd and the figure 4.4b shows the behavior of
hr,eadd across different weights. MW-Loc is used as flaw selection heuristic.
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In
st

an
ce hradd with effort hr,eadd with effort

A
lg

o Partial Plans

A
lg

o Partial Plans

Gen Vis PL CPU DE Gev Vis PL CPU DE

gripper-06 - - - - - - (IDA) (1.5K) (880) (15) (12) (183)
gripper-08 - - - - - - (wA) (1.8K) (1.0K) (15) (20) (208)

hadd with effort headd with effort

gripper-06 wA 493 243 19 4 51 HC 326 142 15 3 21
gripper-08 IDA 1.1K 605 21 12 153 IDA 640 274 21 4 54
gripper-12 IDA 3.4K 2.0K 43 40 612 (IDA) (1.9K) (767) (33) (24) (195)
gripper-20 IDA 20K 11K 79 365 3.7K (IDA) (8.7K) (3.3K) (59) (168) (1.0K)

Table 4.1: Performance comparison in Gripper domain from first International Planning
Competition (IPC). MW-Loc is used for flaw selection during planning pro-
cess. The top half of the table shows performance for hradd and hr,eadd with
effort. Only first 8 problems were solvable. And second half is for hadd and
headd with effort. Algo indicates best of A, wA, IDA and HC. Gen is nodes
generated, Vis is nodes visited, PL is plan length, CPU is execution time in
milliseconds, DE is dead-ends. Overall best results are shown in parenthe-
ses. Dash indicates no solution was found within spoverecified limits. Tables
similar to this have condensed captions further in this chapter.

In
st

an
ce hradd with effort hr,eadd with effort

A
lg

o Partial Plans

A
lg

o Partial Plans

Gen Vis PL CPU DE Gen Vis PL CPU DE

logistics-a IDA 317 174 51 76 13 IDA 308 169 51 76 13
logistics-b HC 244 127 42 88 8 wA 243 130 42 88 8
logistics-c IDA 307 158 50 116 9 IDA 309 159 50 116 9
logistics-d IDA 1.4K 678 73 420 68 (IDA) (654) (338) (70) (412) (42)

hradd without effort hr,eadd without effort

logistics-a IDA 1.8K 1.4K 59 108 172 (IDA) (634) (463) (51) (72) (61)
logistics-b IDA 1.4K 904 48 104 113 (A) (826) (467) (43) (100) (71)
logistics-c IDA 1.7K 1.1K 57 260 138 (IDA) (1.0K) (764) (52) (136) (108)
logistics-d - - - - - - (wA) (3.5K) (1.9K) (70) (484) (367)

Table 4.2: Performance comparison in logistics domain from IPC-2. MC-Loc and MW-
Loc are used for flaw selection in the top half and bottom half of this table
respectively. The top half of the table shows performance for hradd and hr,eadd
with effort. And second half is for hradd and hr,eadd without effort.

associated to the additive heuristic with actions reuse. The term hr,eadd, is derived in a

way similar to the derivation of headd.

In the next section, we use the two improved heuristics mentioned in Eq. 4.10 and

Eq. 4.14 for comparison with hadd and hradd respectively.

4.3.3 Experimental Evaluation

We describe the performance of RegPOCL using these heuristics. The planner uses

fully grounded actions and some existing heuristics along with their improvements pro-

posed by us. For the flaw selection, we use the heuristics from (Younes and Simmons,
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In
st

an
ce hadd with effort headd with effort

A
lg

o Partial Plans

A
lg

o Partial Plans

Gen Vis PL CPU DE Gen Vis PL CPU DE

P-15 (wA) (1.1K) (702) (44) (12) (44) wA 1.3K 826 43 20 45
P-25 A 2.3K 983 35 60 10 wA 2.3K 933 34 48 34
P-30 wA 84K 57K 162 8K 20K (HC) (16K) (9.5K) (130) (632) (920)
P-35 wA 447K 351K 466 210K 102K (wA) (186K) (118K) (377) (38K) (17K)
P-40 - - - - - - (wA) (93K) (66K) (325) (9.5K) (1.8K)

Table 4.3: Performance comparison in rovers domain from IPC-5. MW-Loc is used for
flaw selection during planning process. This table shows performance for
hadd and headd with effort. The selection of heuristics is dependent on the per-
formance of the base heuristics. We can see that only hadd has been selected
here unlike the previous tables, this is because hradd and its enhancement are
not helpful in solving enough number of problems.

2003). LIFO is used for breaking ties selection of partial plan during the planning pro-

cess.

Environment

We perform the experiments on Intel Core 2 Quad with 2.83 GHz 64-bit processor and

4GB of RAM. These experimental results on planning domains from different interna-

tional planning competitions (IPC) are the basis for claims made. The domains are:

Gripper, Logistics, Driverlog, Rovers , and Storage. We present the graphical analysis

for gripper, logistics and driverlog domains since the existing heuristics are not very

successful. We use an upper limit of 1, 000, 000 on the number of nodes generated,

apart from a time limit of 900 seconds.

Experimentation

The results (Tables 4.1 to 4.4) demonstrate that the planner becomes more informed

as search progresses. During the evaluation, we consider non-temporal only STRIPS

style problem instances as we are improving upon the heuristics involved in solving

non-temporal STRIPS style problems effectively in the POCL literature. The tables

contain different sized planning problems and the effort required by the planner to find

the plans.

We employed four well known search algorithms - A∗ (A), wA∗ (wA), Iterative

Deepening A∗ (IDA), Hill Climbing (HC). These table bring out the pros and cons
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In
st

an
ce hradd without effort hr,eadd without effort

A
lg

o Partial Plans

A
lg

o Partial Plans

Gen Vis PL CPU DE Gen Vis PL CPU DE

P-06 - - - - - - (IDA) (1.3K) (1.2K) (8) (40) (304)
P-09 - - - - - - (IDA) (40K) (18K) (11) (1.9K) (3.7K)

hadd with effort headd with effort

P-05 IDA 2.9K 1.8K 13 44 349 (IDA) (836) (523) (11) (16) (101)
P-06 IDA 60K 47K 12 1.7K 9.7K (IDA) (1.2K) (701) (12) (28) (152)

Table 4.4: Performance comparison in storage domain from IPC-5. MW-Loc is used for
flaw selection during planning process. The first part of the table shows per-
formance for hradd and hr,eadd without effort. And the second part demonstrates
for hadd and headd with effort.

of the adapted approach in POCL planning. We found some volatile behavior of the

wA algorithm during evaluation, and further investigated it with improved heuristics

in gripper, logistics and driverlog domains. Some interesting results can be seen in

Fig. 4.2 to Fig. 4.4. We consider four heuristics: hadd and hradd with their respective

improvements: headd and hr,eadd. They are evaluated with effort and without effort. The

usage of a heuristic with effort means we consider the number of preconditions as the

cost of a unit cost action. For example, suppose an action has four preconditions and

all are present in the initial state. A heuristic with effort will estimate the action cost 4

instead of 0. This ends-up with good estimates sometimes as for refining a partial plan

we look for an action resolver for each OC. If interaction between actions is very less,

heuristic with effor gives a very good estimate. The estimates MC, MW, MC-Loc and

MW-Loc are used for the flaw selections (Younes and Simmons, 2003).

Table 4.1 shows the evaluation in the gripper domain. The first half of the table

depicts the performances of hradd and hr,eadd with effort. For larger problems a heuristic

gets more opportunity to see the overall global average-step-error. For instances like

gripper-06 and gripper-08, the new heuristic has performed well whereas its counter-

part is not able to solve these instances. The second part of Table 4.1 demonstrates the

performance of hadd and headd with effort. On instances from gripper-10 to gripper-20

(only gripper-12 and gripper-20 are shown in the table), the improved heuristic compre-

hensively outperforms the hadd. However, in Table 4.5, we also demonstrate the overall

performance of the POCL planner considering all the problems in an aggregate manner.

In Table 4.1, for the last two instances IDA has come up with the best results. Perfor-

mance of both the current and improved versions of hradd either with effort or without

effort are incomparable (as the performance is very dull) to the results mentioned in
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IPC Domain

In
st

an
ce

s Improved Heuristics (he) Current Heuristics (h)

So
lv

ed Average

So
lv

ed Average

Gen Vis CPU Gen Vis CPU

gripper 20 20 (26K) (8.3K) (840) 20 51K 27K 1.4K

logistics 75 (72) 14K 1.8K 66K 61 5.3K 2.3K 57K

rovers 60 (60) 50.2K 32.6K (8.5K) 57 37.8K 29.3K 10.1K

storage 30 (9) 17K 9.5K 337 5 6.1K 3.3K 126

Table 4.5: The performance of the planner is aggregated (average) here in all the se-
lected domains. We follow the same notion for best results and other spec-
ifications as per the previous tables. This table shows the best performance
of the most improved version of the base heuristics (he) corresponding to
the best performance from the base heuristics used (h). Table 4.3 has 40
problems, but here rovers domain has 60. This shows that for aggregation,
planning problems in this domain have been selected from more than one
IPC.

this table, therefore they are not shown. Fig. 4.2 shows the behavior of wA algorithm

with headd. It shows that the number of generated nodes, visited nodes and the dead-ends

becomes constant with the large weights. The best solution is found at weight = 1.10.

Table 4.2 shows the experiments performed in the logistics domain. First part of

this table shows the performance of hradd and hr,eadd with effort. We do not see much

improvement when the improved versions are used though the effort required from the

planner is less for the instance logistics-d. It takes reasonable time to perform the

search to solve logistics-d. The second part shows the performance of hradd and hr,eadd

without effort. Performance of hr,eadd for the partial plan selection, shows good results

compared to hradd. It gives shorter length plans, while also being competitive on the

time required. The estimate hr,eadd solves instance logistics-d (minimum plan length =

70) with exploring approximately half the search space explored by hradd for solving

the instance logistics-c (minimum plan length = 57). Fig. 4.3 shows the behavior of

wA algorithm with headd and hr,eadd respectively. Subgraphs show that the search speed

becomes constant with large weight factors.

Table 4.3 shows the evaluations performed in the rovers domain. The performances

of the heuristics hadd and headd with effort are shown in this table. The heuristic headd

solves all 40 problem instances though hadd solves 37 instances as well. Table 4.4

shows the experiments performed in the storage domain. First part of this table, shows

the outcomes of hradd and hr,eadd without effort. It indicates that taking care of average-
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step-error associated with underperformed heuristics into an account, can solve a few

bigger sized problems. The second part shows the performances of hadd and headd with

effort. The improved heuristic has enhanced the effectiveness of the planner as well.

Specifically, it take very less time to reach to πsol (the solution plan). IDA is good for

both instances but it takes more time.

Fig. 4.2 to 4.4 show the behavior of wA algorithm using headd and hr,eadd respectively,

in the driverlog domain from IPC-3. The subgraphs depict that search becomes very

difficult even for the smaller values of w. In this domain, state-of-the-art heuristics are

among the worst performers along with one of the improved heuristic headd, though the

other improved heuristic hr,eadd solves 13 problem instances out of 20. The state-of-the-

art heuristics do outperform in some domains but not on the number of solved problems.

More observations can be made directly from Tables 4.1 to 4.4, excluded here from the

discussion. In Table 4.5, we aggregate the overall performance of the planner. We

consider each domain which has been considered individually too. We observe that the

improved versions have beaten state-of-the-art heuristics in these domains.

In this section, we discussed an online heuristic tuning approach. We give a gen-

eral formula to enhance the informativeness of a heuristic function in plan space plan-

ning. We demonstrated some experimental results that show the efficiency of the tuning

approach. Considering the results shown by this approach, we employ it to enhance

the learned predictive models. Note that we have already discussed the approaches of

generating offline learned models in the previous chapter. Where we show empirical

evaluations on certain benchmarks. The results obtained were quite convincing.

We had skipped a major evaluation of the offline regression approaches employed in

the previous chapter. Therefore, in the next section, we further test the offline learned

models along with their enhanced version achieved using the general formula (4.9).

Then we compare the results obtained using learned predictive models and their en-

hanced versions. We also compare these evaluations with some latest state-of-the-art

strong heuristics from state-space planning.
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4.4 Evaluation: Predictive Models and Their Tuning

In the subsection 3.3.6, we saw the effectiveness of leaned predictive models that are

learned using supervised learning. We tested the approach in 7 different domains from

various IPCs. In the previous section, we demonstrated that the informativeness of a

given heuristic function can be enhanced using an online tuning approach which cor-

rects the error committed by that heuristic. This has also been tested in several domains.

Next, we work for improving the performance of the offline learned predictive mod-

els using the online heuristic error tuning approach. In this section, we project a learned

predictive model as a given heuristic (hl), and its enhanced version using our tuning

approach as hl,e. As we stated earlier, these improvements are only employed to se-

lect the most suitable partial plan from the set of partial plans. Whilst we use MC-Loc

and MW-Loc (Younes and Simmons, 2003) as flaw selecting heuristics for refining a

partial plan. They give higher preference to the local flaws present in the partial plan.

We employ Greedy Best First Search algorithm for selecting the next partial plan for

refinement.

4.4.1 Environment

We perform the experiments on Intel Core 2 Quad with 2.83 GHz 64-bit processor and

4GB of RAM. To evaluate the effectiveness of learned models and to correct the single-

step-error associated with the models, a time limit of 15 minutes and a node generation

limit of 1 million is used.

4.4.2 Experiments

We briefly discuss the procedure used in the subsection 3.3.6, and use almost the same

text. We use RegPOCL to compare the performances of the offline predictive models hl,

their corresponding enhanced models hl,e and the last four base features. The enhance-

ment (hl,e) can be obtained in a similar way using the online heuristic tuning approach.

For example: the way we obtain headd and hr,eadd in the previous section. These are also

compared with some of the recent effective state-space based heuristics and approaches

that are introduced later. We exclude the first two base features from comparison since
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they are weak heuristics and RegPOCL does not solve sufficient problems using them.

However, they are useful while working jointly with other informed heuristics. Next,

we discuss the observations made during the training phase.

Training

Using Algorithm 1, we prepare datasets and learn different predictive models by apply-

ing the various regression techniques discussed earlier. We select each of the last four

features to solve a set of problems. The target value is the plan length found by Reg-

POCL using the base features. The dataset preparation phase took less than two hours

on an average in each domain, for each of the four features. Once we have enough

instances, we begin the training process. We define a regression model R : T → R,

where T is a training set and R is a set of real numbers. Note that, in Figure 4.1, dif-

ferent heuristics for calculating target values will prefer different paths. Therefore, the

four base features will generate four different datasets. The attribute selection strategy

allows us to select a subset of attributes in the training set by removing correlated and

redundant features. We learn a total of 70 (7 domains × 2 datasets × 5 regression tech-

niques) regression models. The training phase took 20 ms (milliseconds) using LR, 270

ms using LMS, 600 ms using MLP, 82 ms using M5Rule, and 58 ms using M5P on an

average per model. All the learned models have high accuracy but LR is the fastest,

followed by M5P and M5Rule. Next, we test these models on different benchmarks.

Testing

We test the effectiveness of our approaches by selecting partial plans (π) for refine-

ment using RegPOCL. We assume that an informed heuristic leads to minimal possible

refinements needed for π. Next, for the comparison we compute score1 as in IPC for

satisficing track problems. The better score on each standard signifies the better perfor-

mance. We compare performance of the learned models with the selected base features

hadd, hadd,w, hradd, and hradd,w. The comparison is done on the basis of (i.) the number

of solved problems, and (ii.) the score obtained on plan quality, execution time, nodes

(partial plan) visited, and makespan quality.

1https://helios.hud.ac.uk/scommv/IPC-14/
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For example, the offline learned model hr,ladd is learned on a dataset prepared using

hradd. In other words, RegPOCL uses hradd for calculating the target values in the dataset.

Here, hr,ladd can be enhanced to hr,l,eadd using the online heuristic tuning approach which

is expected to be more informed than hr,ladd. It is similar for other learned heuristics.

Please note that hr,l,eadd is obtained by employing the general tuning approach mentioned

in Eq. 4.8. These models are applied in the POCL framework for selecting the most

suitable partial plan, followed by the heuristic MW-Loc (Younes and Simmons, 2003)

for selecting the most adverse flaw in it .

We also compare our approaches with state-space based approaches on the basis

of the number of problems solved, and score obtained on plan quality and total execu-

tion time. We select fast forward heuristic (FF) (Hoffmann and Nebel, 2001), context-

enhanced additive heuristic (CEA) (Helmert and Geffner, 2008), and landmark-cut

heuristic (LM-Cut) (Helmert and Domshlak, 2011). We also use these heuristics to-

gether by applying them in multi-heuristic first solution strategy (MHFS) (Röger and

Helmert, 2010). In general, the strategy performs better with alternating usage of dif-

ferent heuristics instead of combining them. We also compare the effectiveness of our

techniques with LAMA11 (Richter et al., 2011); the winner of IPC-2011 in the sequen-

tial satisficing track. LAMA11 applies FF and LM-Count (Richter et al., 2008) heuris-

tics together using multi-queue search. We set a 20 minutes time limit while evaluating

LAMA11 over these domains, since it has an internal time limit of 5 minutes for the in-

variant synthesis part of translator. All the state-based approaches are evaluated using

Greedy Best First Search algorithm in the fast downward planning system (Helmert,

2006). We use “eager” and “greedy” types of evaluations with no preferred operators.

The regression models selected in the chosen domains are trained using, (i) M5P in

Gripper-1 and Elevator-2, (ii) LR in Rovers-3, Rovers-5, Logistics-2, and Zenotravel-3,

and (iii) M5Rule in Logistics-1.

Note that we now evaluate the enhanced versions of the models learned using su-

pervised approaches that are discussed in the previous chapter. We further discussed

the evaluations of those offline learned predictive models from Table 3.5 and Table 3.6.

Here, we again consider those results to get a clearer and easier overall evaluations

of the models learned using offline learning from multiple inadmissible heuristics, fol-

lowed by the online error tuning which enhances the informativeness of those models.

In Table 4.6, we compare (i) the base features, (ii) offline learned models and their
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Domain State-of-the-art Via learning approaches
hadd hadd,w hradd hradd,w hladd hl,eadd hladd,w hl,eadd,w

Gripper-1 7.0 14.0 0.0 0.0 +18.0 19.7 +18.0 19.7
Rovers-3 8.6 8.3 12.6 19.0 13.3 13.6 13.3 13.6
Rovers-5 8.2 14.7 13.5 30.9 31.4 31.4 24.7 31.4

hadd hadd,w hradd hradd,w hr,ladd hr,l,eadd hr,ladd,w hr,l,eadd,w

Logistics-1 5.1 0.6 16.5 21.6 29.9 29.9 20.7 29.9
Elevator-2 41.4 8.2 58.9 39.7 145.0 +135.0 145.0 +135.0
Logistics-2 24.5 6.5 23.4 26.7 +33.4 35.3 +33.4 35.3
Zenotravel-3 0.0 1.0 2.4 7.7 7.4 11.07 7.4 11.07
Total Score 94.8 53.3 127.3 145.6 278.4 +276 +262.5 +276

Table 4.8: Results of refinement score (the number nodes visited) of RegPOCL using
each heuristic. We compare state-of-the-art heuristics with the learned mod-
els (hl) and their further enhancements (hl,e). The best results are in bold.

enhanced versions (iii) state-space based heuristics FF, CEA, and LM-Cut, and (iv) the

strategies used in MHFS, and LAMA11, on the basis of number of problems solved.

In this table, RegPOCL solves equal number of problems as LAMA11 in Gripper-1,

Rovers-3, Elevator-2, and Logistics-2 using each of learned heuristics and their en-

hanced versions. The base features have performed well in some domains but are not

consistent overall. In Rovers-5, our approaches solved 1 problem less than LAMA11,

but they beat other state-space based competitors comprehensively. Also, each learned

model has performed better than all the base features. For Logistics-2, we are compet-

itive with LAMA11 and solve at least 4 more problems than other good heuristics like

CEA and LM-Cut. In Zenotravel-3, RegPOCL solved 6 problems more by applying

our approaches but loses to the state-based competitors. Our second approach improves

the performance of the learned models in Rovers-5 by solving 3 more problems, and

in Logistics-1 where it solves 10 more problems. This approach could not increase the

coverage in other domains. LAMA11 wins on the basis of the total number of problems

solved in each domain.

In Table 4.7, we compare the score obtained on plan quality by each of the base

features, learned models with their corresponding enhancements, and state-space based

heuristics and techniques. LAMA11 is an anytime planner which gives solution close to

the optimal but takes more time to compute shorter plans. For Gripper-1 and Logistics-2,

RegPOCL using the learned heuristics solves equal number of problems but finds shorter

plans compared to LAMA11. In Logistics-1, RegPOCL lost to LAMA11 by 3 problems

in the number of problems solved, but obtained a higher score in the other problems it
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Domain hadd hadd,w hradd hradd,w hladd hl,eadd hladd,w hl,eadd,w
Gripper-1 16.0 9.8 0.5 0.5 20.0 20.0 20.0 20.0
Rovers-3 17.9 15.5 17.8 15.8 17.4 17.7 17.4 17.7
Rovers-5 26.1 24.2 28.4 26.5 30.5 +29.8 +27.6 30.5

hadd hadd,w hradd hradd,w hr,ladd hr,l,eadd hr,ladd,w hr,l,eadd,w

Logistics-1 21.8 0.9 25.2 20.8 +30.4 +30.4 17.6 30.5
Elevator-2 147.1 11.7 149.1 50.5 149.1 146.8 149.1 146.8
Logistics-2 26.3 7.0 33.0 19.3 +33.5 35.4 +33.4 35.4
Zenotravel-3 3.7 2.7 7.5 7.7 +12.1 13.5 +12.1 13.5
Total Score 258.9 71.8 261.5 141.1 +293 +293.6 +277.2 294.4

Table 4.9: Makespan quality score of the heuristics. We compare state-of-the-art heuris-
tics with the learned models (hl) and their further enhancements (hl,e). The
best results are in bold.

solved as it produces shorter plans using hr,l,eadd,w, hr,ladd, and hr,l,eadd . The effectiveness of

hr,l,eadd,w wins in this domain with best plan quality. hr,l,eadd,w also increases the plan qual-

ity score from 20.9 that is obtained by hr,ladd,w to 32.0 using our online error correcting

strategy. However, in Logistics-2, the performance has decreased after further enhance-

ments of hr,ladd and hr,ladd,w.

In general, the performance of RegPOCL using either of the offline learned models

and their enhancements is often better than that using the base features. In most of the

cases, the online error adjustment approach has further enhanced the performance of

these learned models. The last row of Table 2 gives the score obtained on total time

taken by the process. If a planner takes less than 1 second for solving a problem then

it gets full score. On the total time score the winner is CEA with “lazy” evaluation.

The learned models and their enhanced versions have obtained better scores than other

competitors except CEA. These scores are very close to the winning score and almost

twice that of LAMA11.

In Table 4.8, we compare the score obtained on the number of nodes RegPOCL vis-

its for solving the planning problems. This is obtained for the base features, the learned

heuristics, and their enhanced versions. The models obtained after offline learning are

more informed toward goals and refines fewer partial plans. The score obtained by

the learned models is further increased by a good factor in Zenotravel-3 using the er-

ror correcting approach. For Elevator-2, the error correcting approach has shown some

negative effect which continues in Table 4.9 too. In this table we demonstrate the score

obtained on the makespan quality. Higher score signifies smaller makespan and more
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flexibility in the generated solution plan. In Elevator-2 and Rovers-5, the scores of hladd

and hr,ladd have decreased due to the negative effects of our error adjustment approach,

while the score obtained by hr,l,eadd,w is almost 1.5 times the score of hr,ladd,w in Logistics-1.

In general, the offline learned models have generated more flexible plans with shorter

makespan than the base features. These qualities are further improved using the en-

hanced versions of these models.

The results demonstrated in this chapter show that most of the times the enhance-

ment strategy based on TD learning has performed as per the expectations. The reason

is that this approach improves upon the informativeness of a heuristic as the search pro-

gresses. But there are some domains in which the performance of this approach is not as

per the expectations. For example, Logistics-2 domain in Table 4.7, and Elevator-2 and

Rovers-5 domains in Table 4.9. In the next section, we discuss the possible drawbacks

associated with this tuning approach. This will also cover the possible reasons that led

to the adverse performance in these domains.

4.5 Drawbacks of The Error Tuning Approach

The experiments demonstrate that the online tuning approach does not always enhance

the overall performance of the offline learned predictive models. There are certain rea-

sons for this behavior. The online error adjustment approach performed poorly in a few

domains. If the cases when the orientation of objects in a domain is such that h(πi+1)

is larger than h(πi) then εh(πi) may not be accurate. The inaccuracy in εh(πi) is com-

pounded if the above condition holds at the beginning of the planning process. This

results in an inaccurate εavgh , leading to wrong selection of the partial plan to refine

next. Consequently, the planner ends up finding longer and less flexible plans. In Ta-

ble 4.9, this nature can be seen in Elevator-2 and Rovers-5 domains. Another limitation

is that a refinement may change the existing priorities of partial plans in the set due to

the single-step-error adjustment. Considering the time factor, we avoid changing the

decided priorities of those partial plans. This sometimes also leads to inaccurate εavgh .

In Table 4.7, this could also be a reason for the adverse performance of the enhanced

versions of the learned predictive models like hl,r,eadd and hl,r,eadd,w in Logistics-2 domain.

These are the possible cases when the approach adversely affect the informativeness.
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However, this is not the usual cases with heuristics. Most of the results demonstrated in

this chapters suggest that often the approach leads to a better estimate.

4.6 Discussion

We have already discussed the advantages of our approaches but they also have limi-

tations. In our offline approach, we are bound to do some poor generalization while

learning heuristics. Current literature supports the idea of selecting a large feature set

for more accurate learning (Roberts et al., 2008). Accuracy can also be improved us-

ing an empirical performance model of all components of a portfolio to decide which

component to pick next (Fawcett et al., 2014). In our work, a large feature set may have

some drawbacks. For example, computing the features at each refinement step during

the planning process is computationally expensive.

Our approaches do not utilize the advantage of strategies like alternation queue, and

candidate selection using concept of pareto optimality (Röger and Helmert, 2010). Re-

cently, the planning community has tried coming up with effective portfolios of heuris-

tics or planners. Techniques of generating good portfolios are not new to theoretical

machine learning. A follow up work done in the past is combining multiple heuristics

online (Streeter et al., 2007). One could form a portfolio of different algorithms to re-

duce the total makespan for a set of jobs to solve (Streeter and Smith, 2008). The authors

provide a performance bound for the portfolio approaches. For example, an execution

of a greedy schedule of algorithms cannot exceed four times the optimal schedule.

In planning, a sequential portfolio of planners or heuristics aims to optimize the

performance metrics. In general, such configurations automatically generate sequential

orderings of best planning algorithms. In the portfolio the participants are allotted some

timestamp to participate in solving problems in the ordering. A similar approach is used

in (Seipp et al., 2015b). The authors outline their procedure for optimal and satisficing

planning. The procedure used in this work starts with a set of planning algorithms

and a time bound. It uses another procedure OPTIMIZE that focuses on the marginal

improvements of the performance. Here, the quality of the portfolio is bounded by

(1 − (1/e)) × OPT, and the running time cannot exceed 4 OPT. The components can

be allowed to act in a round-robin fashion (Gerevini et al., 2014).
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The state-of-the-art planners exhibit variations in their runtime for a given problem

instance, so no planner always dominates over others. A good approach would be se-

lecting a planner for a given instance by looking at its processing time. This is done

by building an empirical performance model (EPM) for each planner. EPM is derived

from sets of planning problems and performance observation. It predicts whether the

planner could solve a given instance (Fawcett et al., 2014). The authors consider a

large set of instance features and show that the runtime predictor is often superior to

the individual planners. Performance wise sorting of components in a portfolio is also

possible (Núñez et al., 2015). The portfolio is sorted such that the probability of the

performance of that portfolio is maximum at any time. Experiments show that perfor-

mance of a greedy strategy can be enhanced to near optimal over time. The planning

community has also used Integer and Linear Programming (ILP) approaches. A few

useful LP-based heuristics for optimal planning can be found in (Pommerening et al.,

2013). A further follow up work is (Pommerening et al., 2015). There is also see a

unifying framework of LP-based heuristics for optimal planning (Pommerening et al.,

2014).

The last two paragraphs cover recent literature in brief which explain previous

strategies of combining different base methods. The literature shows that they have

performed well over different benchmarks. Our current settings do not capture any

such ideas for combining different components of heuristics. A direct comparison with

any of the above mentioned works is therefore out of scope for our current work. This is

because, we are more concerned about working with unit cost based POCL heuristics in

isolation. On the other hand, we suspect that many of these strategies, in some adapted

form, would likely be beneficial in the POCL framework.

Different learning techniques have been tried to enhance the efficiency of plan-

ning processes in the past. Our learning techniques are inspired from the following

approaches. Samadi, Felner, and Schaeffer (2008) try to combine several features by

employing ANNs, inspired from single agent games. For optimal targets in the train-

ing sets, they use optimal solution cost (h∗) found for relaxed problems. However, our

offline approach does not need optimal targets, also obtaining them is a tedious task

in POCL planning. They consider planning problems similar enough for employing

the learned models in the training phase to testing phase, which is not always the case.

Another approach is to learn from domain independent heuristics in each domain for
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cost-based planning (Virseda et al., 2013). This is focused on enhancing the informa-

tiveness of real cost heuristics. However, like the previous approach, this is also exposed

to the drawbacks of offline learning. We focus on learning to improve POCL heuristics

and are exposed to all the drawbacks of offline learning discussed earlier. Unlike oth-

ers, we alleviate the effect of the drawbacks using online tuning. As a result, we avoid

restricting our combined approach only to the similar planning problems.

4.7 Related Work

Different learning techniques have been tried to enhance the efficiency of planning pro-

cesses in the past. Our learning techniques are inspired from the following approaches.

Samadi, Felner, and Schaeffer (2008) try to combine several features by employing

ANNs, inspired from single agent games. For optimal targets in the training sets, they

use optimal solution cost (h∗) found for relaxed problems. However, our offline ap-

proach does not need optimal targets, also obtaining them is a tedious task in POCL

planning. They consider planning problems similar enough for employing the learned

models in the training phase to testing phase, which is not always the case. Another

approach is to learn from domain independent heuristics in each domain for cost-based

planning (Virseda et al., 2013). This is focused on enhancing the informativeness of

real cost heuristics. However, like the previous approach, this is also exposed to the

drawbacks of offline learning. We focus on learning to improve POCL heuristics and

are exposed to all the drawbacks of offline learning discussed earlier. Unlike others,

we alleviate the effect of the drawbacks using online tuning. As a result, we avoid

restricting our combined approach only to the similar planning problems.

Arfaee, Zilles, and Holte (2011) give an approach for learning stronger heuristics by

solving small combinatorial problems with single goal state. It starts with domain de-

pendent ad-hoc heuristics, which creates easy problems using Random Walk in case the

original problems are unsolvable using these heuristics. In our work, the main contribu-

tion is to go from domain specific to domain independent way of POCL planning. Our

learning approach in Algorithm 1, is fully automated and domain independent, how-

ever it learns domain specific details. Unlike theirs, Algorithm 1 does not depend on

single goal node during dataset preparation. Furthermore, we use domain independent

98



informed heuristics as features in the training sets. Our offline approach takes much

less time in training as compared to their approach.

Thayer, Dionne, and Ruml (2011) do not use general form of learning in an online

approach that does not need a huge training set. It avoids generalizing the nature of

planning problems too. In general, an offline approach learns better models than online,

however, the evaluation shows that this is not always the case as the online learned mod-

els provide better guidance. Unlike ours, their approach avoids using the real targets for

training which might expose it towards learning inaccurate models. To mitigate the

effects of this drawback, we begin by offline leaning with more accurate targets and ob-

tain informed predictive models. To reduce the negative effects of offline learning, we

use online error tuning based on the parent-child relationship (Definition 4.2.1) (Sutton,

1988). This improves the informativeness of those predictive models after each refine-

ment during planning, and provides an overall better search guidance than individual

models. Unlike their online approach, this one handles explicit looping of actions that

achieve and destroy subgoals, thence does not include those refinements in computing

εavgh . This is crucial in POCL planning because you may never achieve a solution plan.

On the whole, our evaluation shows that it is good to have an informed heuristic (a

predictive model) in the beginning which can further be strengthened using online tun-

ing. However, our online approach is a general form of TD(λ), where λ is 0, hence its

quintessence is similar to the quintessence of one in Thayer et al. In future, we intend

to perform the error tuning using different values of λ.

4.8 Summary and Future Work

We demonstrate the use of different regression models to combine different heuristic

values to arrive at consistently better estimates over a range of planning domains and

problems. We extend some recent attempts to learn combinations of heuristic functions

in state-space based planning to POCL planning. We also show that the learned models

can be further enhanced by an online error correction approach.

In future we intend to explore online learning further, and continue our experiments

with combining heuristic functions. We also aim to explore the use of an optimizing

planner in tandem with bootstrapping methods. Apart from these, we will be giving a
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complete generalization of our current learning approaches for temporal planning and

planning with deadlines.

In the next chapter, we discuss an overall summary of the thesis, and also discuss

related possible future extensions in brief.
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Chapter 5

SUMMARY AND FUTURE WORK

The degree of informativeness of a heuristic function is critical for a heuristic search

algorithm to be successful. It becomes more important when we employ such heuristic

search algorithms (e.g. A∗ and IDA∗ etc) in domain independent planning as a domain

independent heuristic does not perform well in all planning domains. In this thesis, we

presented two major approaches that enhances the effectiveness of the POCL frame-

work employing different types of learning. The first approach learns to combine mul-

tiple heuristics together effectively using a feed forward ANN with a more effective

cost function, R(θ). The error minimization is done using Gradient Descent algorithm.

This is followed by another supervised learning approach for coming up with a combi-

nation of multiple heuristics, and finally the learnt heuristic function (meta-heuristics)

is further tuned using TD learning. By employing TD learning, a heuristic learns from

its own mistakes and tries to be more accurate in the subsequent steps of the planning

process. Next, we present a summary of this thesis below, followed by a discussion on

future extensions.

5.1 Summary and Conclusions

In Chapter 1, we introduce, formally, some specific issues addressed in this thesis,

which is followed by the background discussion in Chapter 2. In Chapter 2, we talk

about the importance of POCL framework and how this is different from state-space

based planning. There are some negative aspects associated with the POCL framework

too like current heuristics are not powerful enough, also sometimes the nodes in the

search space are inconsistent due to looping of dependencies in a partial plan (node in

the plan space). We give two examples in support of opting for the POCL framework.

In Chapter 3, we show the adaptation of some of the regression techniques, for

example: Linear Regression, Multi-Layer Perceptron, PE-ANN etc. The adaptations

have shown good results. Motivated by the current interests of planning researchers, we



also adapted and employed some state-space based heuristics into the POCL framework

with small modifications. The adaptation demonstrates good results. We also adapt

the PE-ANN (Samadi, Felner, and Schaeffer (2008)) and empirically show that the

regularization often affects the learning processes (Bishop, 2006). We give complete

weight update rule for the new cost function used in PE-ANN. We also demonstrate

that often the performance of the combination of heuristics is better than the individual

heuristic functions including the state of the art. This adaptation is still required to be

tested in the POCL framework. As of now, we cannot say anything currently about the

overall performance of a POCL planner using the learned heuristics, but our primary

motivation of getting better estimates, gets fulfilled. In the future, we intend to work

upon this.

In Chapter 4, we discuss an adapted approach from Temporal Difference (TD) learn-

ing in the POCL framework. On the lines of the state-space based literature, we observe

that a heuristic function may commit some error in each step during search. Monitoring

and correcting such error closely might influence the performance of the search algo-

rithm. The adaptation shows good results, demonstrated in the previous chapter. TD

learning is also employed to enhance the learned predictive models that are learned from

multiple existing heuristics. The reason behind employing TD learning for tuning these

learned heuristics is the poor generalizations that often occur during the offline train-

ing. Due to the poor generalization during model learning, the predictive models are

prone to commit mistakes (step-error) at each refinement step as the nature of planning

problems varies, even they belong to same planning domain.

5.2 Future Work

However, there is still much to test in this POCL framework, in future, we intend to test a

complete online approach to enhance the effectiveness of heuristic search algorithms by

designing a well informed heuristic function. In that case we do not need a huge training

set in the beginning of the learning process. We also plan for applying bootstrapping

techniques, though they have not been tested much by the planning community.

In Section 3.2, we discuss that currently the approach used is highly memory inten-

sive because of the employment of the planning graph data structure. In future, we also

102



intend to cut down the space required to grow a planning graph fully. We will be using

TIM (Fox and Long, 1998), which is also adapted in (Fox and Long, 1999). Ridder and

Fox (2014) show that capturing the object symmetries during the planning process re-

duces the space required to solve a planning problem. The approach used in their work

uses TIM as well.

The literature shows that the POCL framework is highly useful in Multi-Agent Plan-

ning (MAP) (Torreño et al., 2015). We could also follow some of the recent efforts

in MAP put by the community researchers (Nissim and Brafman, 2013, 2014). We

strongly feel that the POCL framework is highly useful in temporal planning (Karpas

et al., 2015; Marzal et al., 2014b) too (e.g. POPF (Coles et al., 2010) and POPF2 (Coles

et al., 2011)), more specifically with complex temporal constraints that are beyond dura-

tive actions. We would also like to extend our previous approaches using online learning

or bootstrapping for speeding up the planning process in these frameworks.
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